# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import hashlib import os import sys import tempfile from typing import TYPE_CHECKING, Any, Callable, Optional if TYPE_CHECKING: VLLM_HOST_IP: str = "" VLLM_PORT: Optional[int] = None VLLM_RPC_BASE_PATH: str = tempfile.gettempdir() VLLM_USE_MODELSCOPE: bool = False VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60 VLLM_NCCL_SO_PATH: Optional[str] = None LD_LIBRARY_PATH: Optional[str] = None VLLM_USE_TRITON_FLASH_ATTN: bool = True VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False VLLM_FLASH_ATTN_VERSION: Optional[int] = None LOCAL_RANK: int = 0 CUDA_VISIBLE_DEVICES: Optional[str] = None VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60 VLLM_API_KEY: Optional[str] = None S3_ACCESS_KEY_ID: Optional[str] = None S3_SECRET_ACCESS_KEY: Optional[str] = None S3_ENDPOINT_URL: Optional[str] = None VLLM_MODEL_REDIRECT_PATH: Optional[str] = None VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm") VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm") VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai" VLLM_NO_USAGE_STATS: bool = False VLLM_DO_NOT_TRACK: bool = False VLLM_USAGE_SOURCE: str = "" VLLM_CONFIGURE_LOGGING: int = 1 VLLM_LOGGING_LEVEL: str = "INFO" VLLM_LOGGING_PREFIX: str = "" VLLM_LOGGING_CONFIG_PATH: Optional[str] = None VLLM_LOGITS_PROCESSOR_THREADS: Optional[int] = None VLLM_TRACE_FUNCTION: int = 0 VLLM_ATTENTION_BACKEND: Optional[str] = None VLLM_USE_FLASHINFER_SAMPLER: Optional[bool] = None VLLM_FLASHINFER_FORCE_TENSOR_CORES: bool = False VLLM_PP_LAYER_PARTITION: Optional[str] = None VLLM_CPU_KVCACHE_SPACE: int = 0 VLLM_CPU_OMP_THREADS_BIND: str = "" VLLM_CPU_NUM_OF_RESERVED_CPU: int = 0 VLLM_CPU_MOE_PREPACK: bool = True VLLM_CPU_SGL_KERNEL: bool = False VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache") VLLM_XLA_CHECK_RECOMPILATION: bool = False VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024 VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING: bool = True VLLM_USE_RAY_SPMD_WORKER: bool = False VLLM_USE_RAY_COMPILED_DAG: bool = False VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: str = "auto" VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False VLLM_XLA_USE_SPMD: bool = False VLLM_WORKER_MULTIPROC_METHOD: str = "fork" VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets") VLLM_IMAGE_FETCH_TIMEOUT: int = 5 VLLM_VIDEO_FETCH_TIMEOUT: int = 30 VLLM_AUDIO_FETCH_TIMEOUT: int = 10 VLLM_VIDEO_LOADER_BACKEND: str = "opencv" VLLM_MM_INPUT_CACHE_GIB: int = 8 VLLM_TARGET_DEVICE: str = "cuda" MAX_JOBS: Optional[str] = None NVCC_THREADS: Optional[str] = None VLLM_USE_PRECOMPILED: bool = False VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL: bool = False VLLM_NO_DEPRECATION_WARNING: bool = False VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False CMAKE_BUILD_TYPE: Optional[str] = None VERBOSE: bool = False VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False VLLM_RPC_TIMEOUT: int = 10000 # ms VLLM_HTTP_TIMEOUT_KEEP_ALIVE: int = 5 # seconds VLLM_PLUGINS: Optional[list[str]] = None VLLM_LORA_RESOLVER_CACHE_DIR: Optional[str] = None VLLM_TORCH_PROFILER_DIR: Optional[str] = None VLLM_USE_TRITON_AWQ: bool = False VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False VLLM_SKIP_P2P_CHECK: bool = False VLLM_DISABLED_KERNELS: list[str] = [] VLLM_USE_V1: bool = True VLLM_ROCM_USE_AITER: bool = False VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False VLLM_ROCM_USE_AITER_LINEAR: bool = True VLLM_ROCM_USE_AITER_MOE: bool = True VLLM_ROCM_USE_AITER_RMSNORM: bool = True VLLM_ROCM_USE_AITER_MLA: bool = True VLLM_ROCM_USE_AITER_MHA: bool = True VLLM_ROCM_USE_SKINNY_GEMM: bool = True VLLM_ROCM_FP8_PADDING: bool = True VLLM_ROCM_MOE_PADDING: bool = True VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True VLLM_ENABLE_V1_MULTIPROCESSING: bool = True VLLM_LOG_BATCHSIZE_INTERVAL: float = -1 VLLM_DISABLE_COMPILE_CACHE: bool = False Q_SCALE_CONSTANT: int = 200 K_SCALE_CONSTANT: int = 200 V_SCALE_CONSTANT: int = 100 VLLM_SERVER_DEV_MODE: bool = False VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128 VLLM_MLA_DISABLE: bool = False VLLM_RAY_PER_WORKER_GPUS: float = 1.0 VLLM_RAY_BUNDLE_INDICES: str = "" VLLM_CUDART_SO_PATH: Optional[str] = None VLLM_DP_RANK: int = 0 VLLM_DP_RANK_LOCAL: int = -1 VLLM_DP_SIZE: int = 1 VLLM_DP_MASTER_IP: str = "" VLLM_DP_MASTER_PORT: int = 0 VLLM_MOE_DP_CHUNK_SIZE: int = 256 VLLM_RANDOMIZE_DP_DUMMY_INPUTS: bool = False VLLM_MARLIN_USE_ATOMIC_ADD: bool = False VLLM_V0_USE_OUTLINES_CACHE: bool = False VLLM_V1_USE_OUTLINES_CACHE: bool = False VLLM_TPU_BUCKET_PADDING_GAP: int = 0 VLLM_TPU_MOST_MODEL_LEN: Optional[int] = None VLLM_USE_DEEP_GEMM: bool = False VLLM_USE_FLASHINFER_MOE_FP8: bool = False VLLM_USE_FLASHINFER_MOE_FP4: bool = False VLLM_XGRAMMAR_CACHE_MB: int = 0 VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256 VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False VLLM_NIXL_SIDE_CHANNEL_HOST: str = "localhost" VLLM_NIXL_SIDE_CHANNEL_PORT: int = 5557 VLLM_ALL2ALL_BACKEND: str = "naive" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE: int = 163840 VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1 VLLM_SLEEP_WHEN_IDLE: bool = False VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16 VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS: int = 300 VLLM_KV_CACHE_LAYOUT: Optional[str] = None VLLM_COMPUTE_NANS_IN_LOGITS: bool = False VLLM_USE_NVFP4_CT_EMULATIONS: bool = False VLLM_ROCM_QUICK_REDUCE_QUANTIZATION: str = "NONE" VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16: bool = True VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB: Optional[int] = None VLLM_NIXL_ABORT_REQUEST_TIMEOUT: int = 120 VLLM_USE_CUDNN_PREFILL: bool = False VLLM_LOOPBACK_IP: str = "" def get_default_cache_root(): return os.getenv( "XDG_CACHE_HOME", os.path.join(os.path.expanduser("~"), ".cache"), ) def get_default_config_root(): return os.getenv( "XDG_CONFIG_HOME", os.path.join(os.path.expanduser("~"), ".config"), ) def maybe_convert_int(value: Optional[str]) -> Optional[int]: if value is None: return None return int(value) def get_vllm_port() -> Optional[int]: """Get the port from VLLM_PORT environment variable. Returns: The port number as an integer if VLLM_PORT is set, None otherwise. Raises: ValueError: If VLLM_PORT is a URI, suggest k8s service discovery issue. """ if 'VLLM_PORT' not in os.environ: return None port = os.getenv('VLLM_PORT', '0') try: return int(port) except ValueError as err: from urllib.parse import urlparse parsed = urlparse(port) if parsed.scheme: raise ValueError( f"VLLM_PORT '{port}' appears to be a URI. " "This may be caused by a Kubernetes service discovery issue," "check the warning in: https://docs.vllm.ai/en/stable/serving/env_vars.html" ) from None raise ValueError( f"VLLM_PORT '{port}' must be a valid integer") from err # The begin-* and end* here are used by the documentation generator # to extract the used env vars. # --8<-- [start:env-vars-definition] environment_variables: dict[str, Callable[[], Any]] = { # ================== Installation Time Env Vars ================== # Target device of vLLM, supporting [cuda (by default), # rocm, neuron, cpu] "VLLM_TARGET_DEVICE": lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda"), # Maximum number of compilation jobs to run in parallel. # By default this is the number of CPUs "MAX_JOBS": lambda: os.getenv("MAX_JOBS", None), # Number of threads to use for nvcc # By default this is 1. # If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU. "NVCC_THREADS": lambda: os.getenv("NVCC_THREADS", None), # If set, vllm will use precompiled binaries (*.so) "VLLM_USE_PRECOMPILED": lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")) or bool( os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")), # Whether to force using nightly wheel in python build. # This is used for testing the nightly wheel in python build. "VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL": lambda: bool(int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0")) ), # CMake build type # If not set, defaults to "Debug" or "RelWithDebInfo" # Available options: "Debug", "Release", "RelWithDebInfo" "CMAKE_BUILD_TYPE": lambda: os.getenv("CMAKE_BUILD_TYPE"), # If set, vllm will print verbose logs during installation "VERBOSE": lambda: bool(int(os.getenv('VERBOSE', '0'))), # Root directory for vLLM configuration files # Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set # Note that this not only affects how vllm finds its configuration files # during runtime, but also affects how vllm installs its configuration # files during **installation**. "VLLM_CONFIG_ROOT": lambda: os.path.expanduser( os.getenv( "VLLM_CONFIG_ROOT", os.path.join(get_default_config_root(), "vllm"), )), # ================== Runtime Env Vars ================== # Root directory for vLLM cache files # Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set "VLLM_CACHE_ROOT": lambda: os.path.expanduser( os.getenv( "VLLM_CACHE_ROOT", os.path.join(get_default_cache_root(), "vllm"), )), # used in distributed environment to determine the ip address # of the current node, when the node has multiple network interfaces. # If you are using multi-node inference, you should set this differently # on each node. 'VLLM_HOST_IP': lambda: os.getenv('VLLM_HOST_IP', ""), # used in distributed environment to manually set the communication port # Note: if VLLM_PORT is set, and some code asks for multiple ports, the # VLLM_PORT will be used as the first port, and the rest will be generated # by incrementing the VLLM_PORT value. 'VLLM_PORT': get_vllm_port, # path used for ipc when the frontend api server is running in # multi-processing mode to communicate with the backend engine process. 'VLLM_RPC_BASE_PATH': lambda: os.getenv('VLLM_RPC_BASE_PATH', tempfile.gettempdir()), # If true, will load models from ModelScope instead of Hugging Face Hub. # note that the value is true or false, not numbers "VLLM_USE_MODELSCOPE": lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true", # Interval in seconds to log a warning message when the ring buffer is full "VLLM_RINGBUFFER_WARNING_INTERVAL": lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")), # path to cudatoolkit home directory, under which should be bin, include, # and lib directories. "CUDA_HOME": lambda: os.environ.get("CUDA_HOME", None), # Path to the NCCL library file. It is needed because nccl>=2.19 brought # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234 "VLLM_NCCL_SO_PATH": lambda: os.environ.get("VLLM_NCCL_SO_PATH", None), # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl # library file in the locations specified by `LD_LIBRARY_PATH` "LD_LIBRARY_PATH": lambda: os.environ.get("LD_LIBRARY_PATH", None), # flag to control if vllm should use triton flash attention "VLLM_USE_TRITON_FLASH_ATTN": lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in ("true", "1")), # Use separate prefill and decode kernels for V1 attention instead of # the unified triton kernel. "VLLM_V1_USE_PREFILL_DECODE_ATTENTION": lambda: (os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower() in ("true", "1")), # Force vllm to use a specific flash-attention version (2 or 3), only valid # when using the flash-attention backend. "VLLM_FLASH_ATTN_VERSION": lambda: maybe_convert_int(os.environ.get("VLLM_FLASH_ATTN_VERSION", None)), # Internal flag to enable Dynamo fullgraph capture "VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE": lambda: bool( os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"), # Feature flag to enable/disable Inductor standalone compile. # In torch <= 2.7 we ignore this flag; in torch >= 2.8 this is # enabled by default. "VLLM_USE_STANDALONE_COMPILE": lambda: os.environ.get("VLLM_USE_STANDALONE_COMPILE", "1") == "1", # local rank of the process in the distributed setting, used to determine # the GPU device id "LOCAL_RANK": lambda: int(os.environ.get("LOCAL_RANK", "0")), # used to control the visible devices in the distributed setting "CUDA_VISIBLE_DEVICES": lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None), # timeout for each iteration in the engine "VLLM_ENGINE_ITERATION_TIMEOUT_S": lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")), # API key for vLLM API server "VLLM_API_KEY": lambda: os.environ.get("VLLM_API_KEY", None), # Whether to log responses from API Server for debugging "VLLM_DEBUG_LOG_API_SERVER_RESPONSE": lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False" ).lower() == "true", # S3 access information, used for tensorizer to load model from S3 "S3_ACCESS_KEY_ID": lambda: os.environ.get("S3_ACCESS_KEY_ID", None), "S3_SECRET_ACCESS_KEY": lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None), "S3_ENDPOINT_URL": lambda: os.environ.get("S3_ENDPOINT_URL", None), # Usage stats collection "VLLM_USAGE_STATS_SERVER": lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"), "VLLM_NO_USAGE_STATS": lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1", "VLLM_DO_NOT_TRACK": lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get( "DO_NOT_TRACK", None) or "0") == "1", "VLLM_USAGE_SOURCE": lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"), # Logging configuration # If set to 0, vllm will not configure logging # If set to 1, vllm will configure logging using the default configuration # or the configuration file specified by VLLM_LOGGING_CONFIG_PATH "VLLM_CONFIGURE_LOGGING": lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")), "VLLM_LOGGING_CONFIG_PATH": lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"), # this is used for configuring the default logging level "VLLM_LOGGING_LEVEL": lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(), # if set, VLLM_LOGGING_PREFIX will be prepended to all log messages "VLLM_LOGGING_PREFIX": lambda: os.getenv("VLLM_LOGGING_PREFIX", ""), # if set, vllm will call logits processors in a thread pool with this many # threads. This is useful when using custom logits processors that either # (a) launch additional CUDA kernels or (b) do significant CPU-bound work # while not holding the python GIL, or both. "VLLM_LOGITS_PROCESSOR_THREADS": lambda: int(os.getenv("VLLM_LOGITS_PROCESSOR_THREADS", "0")) if "VLLM_LOGITS_PROCESSOR_THREADS" in os.environ else None, # Trace function calls # If set to 1, vllm will trace function calls # Useful for debugging "VLLM_TRACE_FUNCTION": lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")), # Backend for attention computation # Available options: # - "TORCH_SDPA": use torch.nn.MultiheadAttention # - "FLASH_ATTN": use FlashAttention # - "XFORMERS": use XFormers # - "ROCM_FLASH": use ROCmFlashAttention # - "FLASHINFER": use flashinfer # - "FLASHMLA": use FlashMLA "VLLM_ATTENTION_BACKEND": lambda: os.getenv("VLLM_ATTENTION_BACKEND", None), # If set, vllm will use flashinfer sampler "VLLM_USE_FLASHINFER_SAMPLER": lambda: bool(int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"])) if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ else None, # If set, vllm will force flashinfer to use tensor cores; # otherwise will use heuristic based on model architecture. "VLLM_FLASHINFER_FORCE_TENSOR_CORES": lambda: bool(int(os.getenv("VLLM_FLASHINFER_FORCE_TENSOR_CORES", "0"))), # Pipeline stage partition strategy "VLLM_PP_LAYER_PARTITION": lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None), # (CPU backend only) CPU key-value cache space. # default is 4 GiB "VLLM_CPU_KVCACHE_SPACE": lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")), # (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31", # "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'. "VLLM_CPU_OMP_THREADS_BIND": lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"), # (CPU backend only) CPU cores not used by OMP threads . # Those CPU cores will not be used by OMP threads of a rank. "VLLM_CPU_NUM_OF_RESERVED_CPU": lambda: int(os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0")), # (CPU backend only) whether to use prepack for MoE layer. This will be # passed to ipex.llm.modules.GatedMLPMOE. On unsupported CPUs, you might # need to set this to "0" (False). "VLLM_CPU_MOE_PREPACK": lambda: bool(int(os.getenv("VLLM_CPU_MOE_PREPACK", "1"))), # (CPU backend only) whether to use SGL kernels, optimized for small batch. "VLLM_CPU_SGL_KERNEL": lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))), # If the env var is set, then all workers will execute as separate # processes from the engine, and we use the same mechanism to trigger # execution on all workers. # Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it. "VLLM_USE_RAY_SPMD_WORKER": lambda: bool(int(os.getenv("VLLM_USE_RAY_SPMD_WORKER", "0"))), # If the env var is set, it uses the Ray's Compiled Graph # (previously known as ADAG) API which optimizes the # control plane overhead. # Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it. # Note that this variable is set to 1 in V1 by default # when ray distributed executor is used. "VLLM_USE_RAY_COMPILED_DAG": lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG", "0"))), # If the env var is set, Ray Compiled Graph uses the specified # channel type to communicate between workers belonging to # different pipeline-parallel stages. # Available options: # - "auto": use the default channel type # - "nccl": use NCCL for communication # - "shm": use shared memory and gRPC for communication # This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set. "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE": lambda: os.getenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto"), # If the env var is set, it enables GPU communication overlap # (experimental feature) in Ray's Compiled Graph. This flag is ignored if # VLLM_USE_RAY_COMPILED_DAG is not set. "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM": lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0")) ), # Use dedicated multiprocess context for workers. # Both spawn and fork work "VLLM_WORKER_MULTIPROC_METHOD": lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"), # Path to the cache for storing downloaded assets "VLLM_ASSETS_CACHE": lambda: os.path.expanduser( os.getenv( "VLLM_ASSETS_CACHE", os.path.join(get_default_cache_root(), "vllm", "assets"), )), # Timeout for fetching images when serving multimodal models # Default is 5 seconds "VLLM_IMAGE_FETCH_TIMEOUT": lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")), # Timeout for fetching videos when serving multimodal models # Default is 30 seconds "VLLM_VIDEO_FETCH_TIMEOUT": lambda: int(os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")), # Timeout for fetching audio when serving multimodal models # Default is 10 seconds "VLLM_AUDIO_FETCH_TIMEOUT": lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")), # Backend for Video IO # - "opencv": Default backend that uses OpenCV stream buffered backend. # # Custom backend implementations can be registered # via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and # imported at runtime. # If a non-existing backend is used, an AssertionError will be thrown. "VLLM_VIDEO_LOADER_BACKEND": lambda: os.getenv("VLLM_VIDEO_LOADER_BACKEND", "opencv"), # Cache size (in GiB) for multimodal input cache # Default is 4 GiB "VLLM_MM_INPUT_CACHE_GIB": lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")), # Path to the XLA persistent cache directory. # Only used for XLA devices such as TPUs. "VLLM_XLA_CACHE_PATH": lambda: os.path.expanduser( os.getenv( "VLLM_XLA_CACHE_PATH", os.path.join(get_default_cache_root(), "vllm", "xla_cache"), )), # If set, assert on XLA recompilation after each execution step. "VLLM_XLA_CHECK_RECOMPILATION": lambda: bool(int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))), # Enable SPMD mode for TPU backend. "VLLM_XLA_USE_SPMD": lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))), "VLLM_FUSED_MOE_CHUNK_SIZE": lambda: int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768")), # Control whether to use fused MoE activation chunking. Current chunking # logic is incompatible with torch.compile and causes IMA. See issue # https://github.com/vllm-project/vllm/issues/19631. "VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING": lambda: bool( int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1"))), # If set, vllm will skip the deprecation warnings. "VLLM_NO_DEPRECATION_WARNING": lambda: bool(int(os.getenv("VLLM_NO_DEPRECATION_WARNING", "0"))), # If set, the OpenAI API server will stay alive even after the underlying # AsyncLLMEngine errors and stops serving requests "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH": lambda: bool(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", 0)), # If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows # the user to specify a max sequence length greater than # the max length derived from the model's config.json. # To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1. "VLLM_ALLOW_LONG_MAX_MODEL_LEN": lambda: (os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in ("1", "true")), # If set, forces FP8 Marlin to be used for FP8 quantization regardless # of the hardware support for FP8 compute. "VLLM_TEST_FORCE_FP8_MARLIN": lambda: (os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in ("1", "true")), "VLLM_TEST_FORCE_LOAD_FORMAT": lambda: os.getenv("VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"), # Time in ms for the zmq client to wait for a response from the backend # server for simple data operations "VLLM_RPC_TIMEOUT": lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")), # Timeout in seconds for keeping HTTP connections alive in API server "VLLM_HTTP_TIMEOUT_KEEP_ALIVE": lambda: int(os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5")), # a list of plugin names to load, separated by commas. # if this is not set, it means all plugins will be loaded # if this is set to an empty string, no plugins will be loaded "VLLM_PLUGINS": lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ[ "VLLM_PLUGINS"].split(","), # a local directory to look in for unrecognized LoRA adapters. # only works if plugins are enabled and # VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled. "VLLM_LORA_RESOLVER_CACHE_DIR": lambda: os.getenv("VLLM_LORA_RESOLVER_CACHE_DIR", None), # Enables torch profiler if set. Path to the directory where torch profiler # traces are saved. Note that it must be an absolute path. "VLLM_TORCH_PROFILER_DIR": lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os .path.expanduser(os.getenv("VLLM_TORCH_PROFILER_DIR", "."))), # If set, vLLM will use Triton implementations of AWQ. "VLLM_USE_TRITON_AWQ": lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))), # If set, allow loading or unloading lora adapters in runtime, "VLLM_ALLOW_RUNTIME_LORA_UPDATING": lambda: (os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in ("1", "true")), # By default, vLLM will check the peer-to-peer capability itself, # in case of broken drivers. See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa # If this env var is set to 1, vLLM will skip the peer-to-peer check, # and trust the driver's peer-to-peer capability report. "VLLM_SKIP_P2P_CHECK": lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "0") == "1", # List of quantization kernels that should be disabled, used for testing # and performance comparisons. Currently only affects MPLinearKernel # selection # (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel) "VLLM_DISABLED_KERNELS": lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ[ "VLLM_DISABLED_KERNELS"].split(","), # If set, use the V1 code path. "VLLM_USE_V1": lambda: bool(int(os.getenv("VLLM_USE_V1", "1"))), # Disable aiter ops unless specifically enabled. # Acts as a parent switch to enable the rest of the other operations. "VLLM_ROCM_USE_AITER": lambda: (os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in ("true", "1")), # Whether to use aiter paged attention. # By default is disabled. "VLLM_ROCM_USE_AITER_PAGED_ATTN": lambda: (os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in ("true", "1")), # use aiter linear op if aiter ops are enabled # The following list of related ops # - scaled_mm (per-tensor / rowwise) "VLLM_ROCM_USE_AITER_LINEAR": lambda: (os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in ("true", "1")), # Whether to use aiter moe ops. # By default is enabled. "VLLM_ROCM_USE_AITER_MOE": lambda: (os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in ("true", "1")), # use aiter rms norm op if aiter ops are enabled. "VLLM_ROCM_USE_AITER_RMSNORM": lambda: (os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in ("true", "1")), # Whether to use aiter mla ops. # By default is enabled. "VLLM_ROCM_USE_AITER_MLA": lambda: (os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in ("true", "1")), # Whether to use aiter mha ops. # By default is enabled. "VLLM_ROCM_USE_AITER_MHA": lambda: (os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in ("true", "1")), # use rocm skinny gemms "VLLM_ROCM_USE_SKINNY_GEMM": lambda: (os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in ("true", "1")), # Pad the fp8 weights to 256 bytes for ROCm "VLLM_ROCM_FP8_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))), # Pad the weights for the moe kernel "VLLM_ROCM_MOE_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))), # custom paged attention kernel for MI3* cards "VLLM_ROCM_CUSTOM_PAGED_ATTN": lambda: (os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in ("true", "1")), # Custom quick allreduce kernel for MI3* cards # Choice of quantization level: FP, INT8, INT6, INT4 or NONE # Recommended for large models to get allreduce "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION": lambda: os.getenv("VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", "NONE").upper(), # Custom quick allreduce kernel for MI3* cards # Due to the lack of the bfloat16 asm instruction, bfloat16 # kernels are slower than fp16, # If environment variable is set to 1, the input is converted to fp16 "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16": lambda: (os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower() in ("true", "1")), # Custom quick allreduce kernel for MI3* cards. # Controls the maximum allowed number of data bytes(MB) for custom quick # allreduce communication. # Default: 2048 MB. # Data exceeding this size will use either custom allreduce or RCCL # communication. "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB": lambda: maybe_convert_int( os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None)), # Divisor for dynamic query scale factor calculation for FP8 KV Cache "Q_SCALE_CONSTANT": lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")), # Divisor for dynamic key scale factor calculation for FP8 KV Cache "K_SCALE_CONSTANT": lambda: int(os.getenv("K_SCALE_CONSTANT", "200")), # Divisor for dynamic value scale factor calculation for FP8 KV Cache "V_SCALE_CONSTANT": lambda: int(os.getenv("V_SCALE_CONSTANT", "100")), # If set, enable multiprocessing in LLM for the V1 code path. "VLLM_ENABLE_V1_MULTIPROCESSING": lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))), "VLLM_LOG_BATCHSIZE_INTERVAL": lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")), "VLLM_DISABLE_COMPILE_CACHE": lambda: bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))), # If set, vllm will run in development mode, which will enable # some additional endpoints for developing and debugging, # e.g. `/reset_prefix_cache` "VLLM_SERVER_DEV_MODE": lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))), # Controls the maximum number of requests to handle in a # single asyncio task when processing per-token outputs in the # V1 AsyncLLM interface. It is applicable when handling a high # concurrency of streaming requests. # Setting this too high can result in a higher variance of # inter-message latencies. Setting it too low can negatively impact # TTFT and overall throughput. "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE": lambda: int(os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")), # If set, vLLM will disable the MLA attention optimizations. "VLLM_MLA_DISABLE": lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))), # Number of GPUs per worker in Ray, if it is set to be a fraction, # it allows ray to schedule multiple actors on a single GPU, # so that users can colocate other actors on the same GPUs as vLLM. "VLLM_RAY_PER_WORKER_GPUS": lambda: float(os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")), # Bundle indices for Ray, if it is set, it can control precisely # which indices are used for the Ray bundle, for every worker. # Format: comma-separated list of integers, e.g. "0,1,2,3" "VLLM_RAY_BUNDLE_INDICES": lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""), # In some system, find_loaded_library() may not work. So we allow users to # specify the path through environment variable VLLM_CUDART_SO_PATH. "VLLM_CUDART_SO_PATH": lambda: os.getenv("VLLM_CUDART_SO_PATH", None), # Rank of the process in the data parallel setting "VLLM_DP_RANK": lambda: int(os.getenv("VLLM_DP_RANK", "0")), # Rank of the process in the data parallel setting. # Defaults to VLLM_DP_RANK when not set. "VLLM_DP_RANK_LOCAL": lambda: int( os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)), # World size of the data parallel setting "VLLM_DP_SIZE": lambda: int(os.getenv("VLLM_DP_SIZE", "1")), # IP address of the master node in the data parallel setting "VLLM_DP_MASTER_IP": lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"), # Port of the master node in the data parallel setting "VLLM_DP_MASTER_PORT": lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")), # In the context of executing MoE models with Data-Parallel, Expert-Parallel # and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE # dictates the quantum of tokens that can be dispatched from a DP # rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE # units. "VLLM_MOE_DP_CHUNK_SIZE": lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")), # Randomize inputs during dummy runs when using Data Parallel "VLLM_RANDOMIZE_DP_DUMMY_INPUTS": lambda: os.environ.get("VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0") == "1", # Whether to use S3 path for model loading in CI via RunAI Streamer "VLLM_CI_USE_S3": lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1", # Use model_redirect to redirect the model name to a local folder. # `model_redirect` can be a json file mapping the model between # repo_id and local folder: # {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"} # or a space separated values table file: # meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B "VLLM_MODEL_REDIRECT_PATH": lambda: os.environ.get("VLLM_MODEL_REDIRECT_PATH", None), # Whether to use atomicAdd reduce in gptq/awq marlin kernel. "VLLM_MARLIN_USE_ATOMIC_ADD": lambda: os.environ.get("VLLM_MARLIN_USE_ATOMIC_ADD", "0") == "1", # Whether to turn on the outlines cache for V0 # This cache is unbounded and on disk, so it's not safe to use in # an environment with potentially malicious users. "VLLM_V0_USE_OUTLINES_CACHE": lambda: os.environ.get("VLLM_V0_USE_OUTLINES_CACHE", "0") == "1", # Whether to turn on the outlines cache for V1 # This cache is unbounded and on disk, so it's not safe to use in # an environment with potentially malicious users. "VLLM_V1_USE_OUTLINES_CACHE": lambda: os.environ.get("VLLM_V1_USE_OUTLINES_CACHE", "0") == "1", # Gap between padding buckets for the forward pass. So we have # 8, we will run forward pass with [16, 24, 32, ...]. "VLLM_TPU_BUCKET_PADDING_GAP": lambda: int(os.environ["VLLM_TPU_BUCKET_PADDING_GAP"]) if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ else 0, "VLLM_TPU_MOST_MODEL_LEN": lambda: maybe_convert_int(os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None)), # Allow use of DeepGemm kernels for fused moe ops. "VLLM_USE_DEEP_GEMM": lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "0"))), # Allow use of FlashInfer MoE kernels for fused moe ops. "VLLM_USE_FLASHINFER_MOE_FP8": lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0"))), # Allow use of FlashInfer CUTLASS kernels for fused moe ops. "VLLM_USE_FLASHINFER_MOE_FP4": lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0"))), # Control the cache sized used by the xgrammar compiler. The default # of 512 MB should be enough for roughly 1000 JSON schemas. # It can be changed with this variable if needed for some reason. "VLLM_XGRAMMAR_CACHE_MB": lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")), # Control the threshold for msgspec to use 'zero copy' for # serialization/deserialization of tensors. Tensors below # this limit will be encoded into the msgpack buffer, and # tensors above will instead be sent via a separate message. # While the sending side still actually copies the tensor # in all cases, on the receiving side, tensors above this # limit will actually be zero-copy decoded. "VLLM_MSGPACK_ZERO_COPY_THRESHOLD": lambda: int(os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")), # If set, allow insecure serialization using pickle. # This is useful for environments where it is deemed safe to use the # insecure method and it is needed for some reason. "VLLM_ALLOW_INSECURE_SERIALIZATION": lambda: bool(int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0"))), # IP address used for NIXL handshake between remote agents. "VLLM_NIXL_SIDE_CHANNEL_HOST": lambda: os.getenv("VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost"), # Port used for NIXL handshake between remote agents. "VLLM_NIXL_SIDE_CHANNEL_PORT": lambda: int(os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5557")), # all2all backend for vllm's expert parallel communication # Available options: # - "naive": naive all2all implementation using all-reduce # - "pplx": use pplx kernels # - "deepep_high_throughput", use deepep high-throughput kernels # - "deepep_low_latency", use deepep low-latency kernels "VLLM_ALL2ALL_BACKEND": lambda: os.getenv("VLLM_ALL2ALL_BACKEND", "naive"), # Control the maximum number of tokens per expert supported by the # NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for # the blockscale tensor of activations NVFP4 Quantization. # This is used to prevent the kernel from running out of memory. "VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE": lambda: int(os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840")), # Regex timeout for use by the vLLM tool parsing plugins. "VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS": lambda: int(os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1")), # Reduce CPU usage when vLLM is idle. Enabling this will incur small # latency penalty when a request eventually comes. "VLLM_SLEEP_WHEN_IDLE": lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))), # Control the max chunk bytes (in MB) for the rpc message queue. # Object larger than this threshold will be broadcast to worker # processes via zmq. "VLLM_MQ_MAX_CHUNK_BYTES_MB": lambda: int(os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")), # Timeout in seconds for execute_model RPC calls in multiprocessing # executor (only applies when TP > 1). "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS": lambda: int(os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300")), # KV Cache layout used throughout vllm. # Some common values are: # - NHD # - HND # Where N=num_blocks, H=num_heads and D=head_size. The default value will # leave the layout choice to the backend. Mind that backends may only # implement and support a subset of all possible layouts. "VLLM_KV_CACHE_LAYOUT": lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None), # Enable checking whether the generated logits contain NaNs, # indicating corrupted output. Useful for debugging low level bugs # or bad hardware but it may add compute overhead. "VLLM_COMPUTE_NANS_IN_LOGITS": lambda: bool(int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))), # Controls whether or not emulations are used for NVFP4 # generations on machines < 100 for compressed-tensors # models "VLLM_USE_NVFP4_CT_EMULATIONS": lambda: bool(int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0"))), # Time (in seconds) after which the KV cache on the producer side is # automatically cleared if no READ notification is received from the # consumer. This is only applicable when using NixlConnector in a # disaggregated decode-prefill setup. "VLLM_NIXL_ABORT_REQUEST_TIMEOUT": lambda: int(os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "120")), # Controls whether or not to use cudnn prefill "VLLM_USE_CUDNN_PREFILL": lambda: bool(int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))), # If set to 1, use the TRTLLM Decode Attention backend in flashinfer. "VLLM_USE_TRTLLM_DECODE_ATTENTION": lambda: os.getenv("VLLM_USE_TRTLLM_DECODE_ATTENTION", None), # Used to force set up loopback IP "VLLM_LOOPBACK_IP": lambda: os.getenv("VLLM_LOOPBACK_IP", ""), } # --8<-- [end:env-vars-definition] def __getattr__(name: str): # lazy evaluation of environment variables if name in environment_variables: return environment_variables[name]() raise AttributeError(f"module {__name__!r} has no attribute {name!r}") def __dir__(): return list(environment_variables.keys()) def is_set(name: str): """Check if an environment variable is explicitly set.""" if name in environment_variables: return name in os.environ raise AttributeError(f"module {__name__!r} has no attribute {name!r}") def set_vllm_use_v1(use_v1: bool): if is_set("VLLM_USE_V1"): raise ValueError( "Should not call set_vllm_use_v1() if VLLM_USE_V1 is set " "explicitly by the user. Please raise this as a Github " "Issue and explicitly set VLLM_USE_V1=0 or 1.") os.environ["VLLM_USE_V1"] = "1" if use_v1 else "0" def compute_hash() -> str: """ WARNING: Whenever a new key is added to this environment variables, ensure that it is included in the factors list if it affects the computation graph. For example, different values of VLLM_PP_LAYER_PARTITION will generate different computation graphs, so it is included in the factors list. The env vars that affect the choice of different kernels or attention backends should also be included in the factors list. """ factors: list[Any] = [] # summarize environment variables def factorize(name: str): if __getattr__(name): factors.append(__getattr__(name)) else: factors.append("None") # The values of envs may affects the computation graph. # TODO(DefTruth): hash all environment variables? # for key in environment_variables: # factorize(key) environment_variables_to_hash = [ "VLLM_PP_LAYER_PARTITION", "VLLM_MLA_DISABLE", "VLLM_USE_TRITON_FLASH_ATTN", "VLLM_USE_TRITON_AWQ", "VLLM_DP_RANK", "VLLM_DP_SIZE", "VLLM_USE_STANDALONE_COMPILE", "VLLM_FUSED_MOE_CHUNK_SIZE", ] for key in environment_variables_to_hash: if key in environment_variables: factorize(key) hash_str = hashlib.md5(str(factors).encode(), usedforsecurity=False).hexdigest() return hash_str