# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from typing import Optional from .tokenizer import AnyTokenizer def _replace_none_with_empty(tokens: list[Optional[str]]): for i, token in enumerate(tokens): if token is None: tokens[i] = "" def _convert_tokens_to_string_with_added_encoders( tokenizer: AnyTokenizer, output_tokens: list[str], skip_special_tokens: bool, spaces_between_special_tokens: bool, ) -> str: # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921 # NOTE(woosuk): The following code is slow because it runs a for loop over # the output_tokens. In Python, running a for loop over a list can be slow # even when the loop body is very simple. sub_texts: list[str] = [] current_sub_text: list[str] = [] all_special_tokens = set(tokenizer.all_special_tokens) for token in output_tokens: if skip_special_tokens and token in all_special_tokens: continue if token in tokenizer.get_added_vocab(): if current_sub_text: sub_text = tokenizer.convert_tokens_to_string(current_sub_text) sub_texts.append(sub_text) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_text = tokenizer.convert_tokens_to_string(current_sub_text) sub_texts.append(sub_text) if spaces_between_special_tokens: return " ".join(sub_texts) else: return "".join(sub_texts) # 5 is an arbitrary value that should work for all # tokenizers (bigger = more conservative). INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET = 5 def convert_prompt_ids_to_tokens( tokenizer: AnyTokenizer, prompt_ids: list[int], skip_special_tokens: bool = False, ) -> tuple[list[str], int, int]: """Converts the prompt ids to tokens and returns the tokens and offsets for incremental detokenization. Note that not all tokens are converted to strings. Only the tokens that are necessary for incremental detokenization are converted to strings. """ # We do not need to convert the whole prompt to tokens. # Offset a little more in case we have special tokens. new_tokens = tokenizer.convert_ids_to_tokens( prompt_ids[-INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET - 2:], skip_special_tokens=skip_special_tokens) read_offset = len(new_tokens) prefix_offset = max( read_offset - INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET, 0) # This is required to guard against out-of-vocab prompt token ids _replace_none_with_empty(new_tokens) # type: ignore[arg-type] return new_tokens, prefix_offset, read_offset def convert_ids_list_to_tokens( tokenizer: AnyTokenizer, token_ids: list[int], ) -> list[str]: """Detokenize the input ids individually. Args: tokenizer: tokenizer used by model under test token_ids: convert these tokens (Python list form) Returns: Python list of token string representations """ token_str_lst = tokenizer.convert_ids_to_tokens(token_ids) _replace_none_with_empty(token_str_lst) # type: ignore return token_str_lst # Based on # https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15 # under Apache 2.0 license def detokenize_incrementally( tokenizer: AnyTokenizer, all_input_ids: list[int], prev_tokens: Optional[list[str]], prefix_offset: int, read_offset: int, skip_special_tokens: bool = False, spaces_between_special_tokens: bool = True, ) -> tuple[list[str], str, int, int]: """Detokenizes the input ids incrementally and returns the new tokens and the new text. If `prev_tokens` is None, this function will convert the input ids to tokens and return the tokens and the new text. Otherwise, it will return the new tokens and the new text. This function will also return the new prefix offset and the new read offset to be used in the next iteration. The offsets are necessary to defeat cleanup algorithms in the decode which decide to add a space or not depending on the surrounding ids. Args: tokenizer: The tokenizer to use. all_input_ids: The input ids. The last id is the new token id. prev_tokens: The previous tokens. If None, this function will convert the input ids to tokens and return the tokens and the new text. prefix_offset: The prefix offset. read_offset: The read offset. skip_special_tokens: Whether to skip special tokens. spaces_between_special_tokens: Whether to add spaces between special tokens. """ new_token_id = all_input_ids[-1] # This is the first iteration for this sequence is_first_iter = prev_tokens is None if is_first_iter: (prev_tokens, prefix_offset, read_offset) = convert_prompt_ids_to_tokens( tokenizer, all_input_ids[:-1], skip_special_tokens=skip_special_tokens) assert prev_tokens is not None # If the new token id is out of bounds, return an empty string. if 0 <= new_token_id < len(tokenizer): # Put new_token_id in a list so skip_special_tokens is respected new_tokens = tokenizer.convert_ids_to_tokens( [new_token_id], skip_special_tokens=skip_special_tokens) if isinstance(new_tokens, str): new_tokens = [new_tokens] else: new_tokens = [""] output_tokens = prev_tokens + new_tokens # If this is the first iteration, return all tokens. if is_first_iter: new_tokens = output_tokens # The prefix text is necessary only to defeat cleanup algorithms in # the decode which decide to add a space or not depending on the # surrounding ids. if tokenizer.is_fast or not tokenizer.get_added_vocab(): prefix_text = tokenizer.convert_tokens_to_string( output_tokens[prefix_offset:read_offset]) new_text = tokenizer.convert_tokens_to_string( output_tokens[prefix_offset:]) else: prefix_text = _convert_tokens_to_string_with_added_encoders( tokenizer, output_tokens[prefix_offset:read_offset], skip_special_tokens=skip_special_tokens, spaces_between_special_tokens=spaces_between_special_tokens, ) new_text = _convert_tokens_to_string_with_added_encoders( tokenizer, output_tokens[prefix_offset:], skip_special_tokens=skip_special_tokens, spaces_between_special_tokens=spaces_between_special_tokens, ) if len(new_text) <= len(prefix_text) or new_text.endswith("�"): # utf-8 char at the end means it's a potential unfinished byte sequence # from byte fallback tokenization. # If it's in the middle, it's probably a real invalid id generated # by the model return new_tokens, "", prefix_offset, read_offset new_text = new_text[len(prefix_text):] return new_tokens, new_text, read_offset, len(output_tokens)