# --8<-- [start:installation] vLLM offers basic model inferencing and serving on Arm CPU platform, with support NEON, data types FP32, FP16 and BF16. # --8<-- [end:installation] # --8<-- [start:requirements] - OS: Linux - Compiler: `gcc/g++ >= 12.3.0` (optional, recommended) - Instruction Set Architecture (ISA): NEON support is required # --8<-- [end:requirements] # --8<-- [start:set-up-using-python] # --8<-- [end:set-up-using-python] # --8<-- [start:pre-built-wheels] Pre-built vLLM wheels for Arm are available since version 0.11.2. These wheels contain pre-compiled C++ binaries. Please replace `` in the commands below with a specific version string (e.g., `0.11.2`). ```bash uv pip install --pre vllm==+cpu --extra-index-url https://wheels.vllm.ai/%2Bcpu/ ``` ??? console "pip" ```bash pip install --pre vllm==+cpu --extra-index-url https://wheels.vllm.ai/%2Bcpu/ ``` The `uv` approach works for vLLM `v0.6.6` and later. A unique feature of `uv` is that packages in `--extra-index-url` have [higher priority than the default index](https://docs.astral.sh/uv/pip/compatibility/#packages-that-exist-on-multiple-indexes). If the latest public release is `v0.6.6.post1`, `uv`'s behavior allows installing a commit before `v0.6.6.post1` by specifying the `--extra-index-url`. In contrast, `pip` combines packages from `--extra-index-url` and the default index, choosing only the latest version, which makes it difficult to install a development version prior to the released version. **Install the latest code** LLM inference is a fast-evolving field, and the latest code may contain bug fixes, performance improvements, and new features that are not released yet. To allow users to try the latest code without waiting for the next release, vLLM provides working pre-built Arm CPU wheels for every commit since `v0.11.2` on . For native CPU wheels, this index should be used: * `https://wheels.vllm.ai/nightly/cpu/vllm` To install from nightly index, copy the link address of the `*.whl` under this index to run, for example: ```bash uv pip install -U https://wheels.vllm.ai/c756fb678184b867ed94e5613a529198f1aee423/vllm-0.13.0rc2.dev11%2Bgc756fb678.cpu-cp38-abi3-manylinux_2_31_aarch64.whl # current nightly build (the filename will change!) ``` **Install specific revisions** If you want to access the wheels for previous commits (e.g. to bisect the behavior change, performance regression), specify the full commit hash in the index: https://wheels.vllm.ai/${VLLM_COMMIT}/cpu/vllm . Then, copy the link address of the `*.whl` under this index to run: ```bash uv pip install -U ``` # --8<-- [end:pre-built-wheels] # --8<-- [start:build-wheel-from-source] First, install the recommended compiler. We recommend using `gcc/g++ >= 12.3.0` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run: ```bash sudo apt-get update -y sudo apt-get install -y --no-install-recommends ccache git curl wget ca-certificates gcc-12 g++-12 libtcmalloc-minimal4 libnuma-dev ffmpeg libsm6 libxext6 libgl1 jq lsof sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 ``` Second, clone the vLLM project: ```bash git clone https://github.com/vllm-project/vllm.git vllm_source cd vllm_source ``` Third, install required dependencies: ```bash uv pip install -r requirements/cpu-build.txt --torch-backend cpu uv pip install -r requirements/cpu.txt --torch-backend cpu ``` ??? console "pip" ```bash pip install --upgrade pip pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu ``` Finally, build and install vLLM: ```bash VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation ``` If you want to develop vLLM, install it in editable mode instead. ```bash VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation ``` Testing has been conducted on AWS Graviton3 instances for compatibility. # --8<-- [end:build-wheel-from-source] # --8<-- [start:pre-built-images] See [Using Docker](../../deployment/docker.md) for instructions on using the official Docker image. Stable vLLM Docker images are being pre-built for Arm from version 0.12.0. Available image tags are here: [https://gallery.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo](https://gallery.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo). Please replace `` in the command below with a specific version string (e.g., `0.12.0`). ```bash docker pull public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:v ``` You can also access the latest code with Docker images. These are not intended for production use and are meant for CI and testing only. They will expire after several days. The latest code can contain bugs and may not be stable. Please use it with caution. ```bash export VLLM_COMMIT=6299628d326f429eba78736acb44e76749b281f5 # use full commit hash from the main branch docker pull public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:${VLLM_COMMIT}-arm64-cpu ``` # --8<-- [end:pre-built-images] # --8<-- [start:build-image-from-source] ```bash docker build -f docker/Dockerfile.cpu \ --tag vllm-cpu-env . # Launching OpenAI server docker run --rm \ --privileged=true \ --shm-size=4g \ -p 8000:8000 \ -e VLLM_CPU_KVCACHE_SPACE= \ -e VLLM_CPU_OMP_THREADS_BIND= \ vllm-cpu-env \ --model=meta-llama/Llama-3.2-1B-Instruct \ --dtype=bfloat16 \ other vLLM OpenAI server arguments ``` !!! tip An alternative of `--privileged=true` is `--cap-add SYS_NICE --security-opt seccomp=unconfined`. # --8<-- [end:build-image-from-source] # --8<-- [start:extra-information] # --8<-- [end:extra-information]