# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # Copyright 2023 The vLLM team. # # This file is a part of the vllm-ascend project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Adapted from # https://github.com/vllm-project/vllm/blob/v0.7.3/vllm/model_executor/models/deepseek_mtp.py from collections.abc import Iterable import torch import torch.nn as nn from vllm.compilation.decorators import support_torch_compile from vllm.config import VllmConfig # SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.vocab_parallel_embedding import ( VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.models.deepseek_mtp import ( DeepSeekMultiTokenPredictor, DeepSeekMultiTokenPredictorLayer, SharedHead, ) from vllm.model_executor.models.utils import maybe_prefix from vllm.sequence import IntermediateTensors from .interfaces import SupportsPP from .openpangu import OpenPanguDecoderLayer class OpenPanguMultiTokenPredictorLayer(DeepSeekMultiTokenPredictorLayer): def __init__(self, vllm_config: VllmConfig, prefix: str) -> None: nn.Module.__init__(self) config = vllm_config.speculative_config.draft_model_config.hf_config self.config = config quant_config = vllm_config.quant_config self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False) self.shared_head = SharedHead( config=config, quant_config=quant_config, prefix=maybe_prefix(prefix, "shared_head"), ) self.mtp_block = OpenPanguDecoderLayer(config, prefix, vllm_config) class OpenPanguMultiTokenPredictor(DeepSeekMultiTokenPredictor): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): nn.Module.__init__(self) config = vllm_config.model_config.hf_config self.mtp_start_layer_idx = config.num_hidden_layers self.num_mtp_layers = config.num_nextn_predict_layers # to map the exact layer index from weights self.layers = torch.nn.ModuleDict( { str(idx): OpenPanguMultiTokenPredictorLayer( vllm_config, f"{prefix}.layers.{idx}" ) for idx in range( self.mtp_start_layer_idx, self.mtp_start_layer_idx + self.num_mtp_layers, ) } ) self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.logits_processor = LogitsProcessor(config.vocab_size) @support_torch_compile class OpenPanguMTP(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() self.config = vllm_config.model_config.hf_config self.model = OpenPanguMultiTokenPredictor( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, hidden_states: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, spec_step_idx: int = 0, ) -> torch.Tensor: hidden_states = self.model( input_ids, positions, hidden_states, inputs_embeds, spec_step_idx, ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, spec_step_idx: int = 0, ) -> torch.Tensor | None: return self.model.compute_logits(hidden_states, spec_step_idx) def get_spec_layer(self, name): if ( "layers" in name and hasattr(self.config, "num_nextn_predict_layers") and self.config.num_nextn_predict_layers > 0 ): layer_idx = int(name.split("layers.")[-1].split(".")[0]) mtp_idx = layer_idx - self.config.num_hidden_layers if mtp_idx >= 0 and mtp_idx < self.config.num_nextn_predict_layers: return layer_idx return None def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ("fused_qkv_a_proj", "q_a_proj", 0), ("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1), ] expert_params_mapping = FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.n_routed_experts, ) params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue spec_layer = self.get_spec_layer(name) if spec_layer is None: continue name = self._rewrite_spec_layer_name(spec_layer, name) for param_name, weight_name, shard_id in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if ("mlp.experts." in name) and name not in params_dict: continue name_mapped = name.replace(weight_name, param_name) # QKV fusion is optional, fall back to normal # weight loading if it's not enabled if ( param_name == "fused_qkv_a_proj" ) and name_mapped not in params_dict: continue else: name = name_mapped # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader( param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id, ) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if ( spec_layer != self.model.mtp_start_layer_idx and ".layers" not in name ): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str: """ Rewrite the weight name to match the format of the original model. Add .mtp_block for modules in transformer layer block for spec layer and rename shared layer weights to be top level. """ spec_layer_weight_names = [ "embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head", ] shared_weight_names = ["embed_tokens"] spec_layer_weight = False shared_weight = False for weight_name in spec_layer_weight_names: if weight_name in name: spec_layer_weight = True if weight_name in shared_weight_names: shared_weight = True break if not spec_layer_weight: # treat rest weights as weights for transformer layer block name = name.replace( f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block." ) elif shared_weight: # treat shared weights as top level weights name = name.replace(f"model.layers.{spec_layer}.", "model.") return name