# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py # Copyright (c) Alibaba Cloud. # LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE """Inference-only QWen model compatible with HuggingFace weights.""" import json from collections.abc import Iterable from itertools import islice from typing import Any import torch from torch import nn from transformers import PretrainedConfig from vllm.attention.layer import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP from .utils import ( is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class QWenMLP(nn.Module): """MLP for the language component of the Qwen model, which contains a MergedColumnParallelLinear merging 2 outputs via silu activation.""" def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str = "silu", quant_config: QuantizationConfig | None = None, ): super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config ) self.c_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x: torch.Tensor) -> torch.Tensor: gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.c_proj(x) return x class QWenAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, max_position_embeddings: int, rope_parameters: dict[str, Any] | None = None, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.hidden_size = hidden_size tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = self.total_num_heads // tensor_model_parallel_world_size self.head_dim = hidden_size // self.total_num_heads self.c_attn = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, bias=True, quant_config=quant_config, prefix=f"{prefix}.c_attn", ) self.c_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.c_proj", ) self.scaling = self.head_dim**-0.5 self.rotary_emb = get_rope( self.head_dim, max_position=max_position_embeddings, rope_parameters=rope_parameters, ) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.c_proj(attn_output) return output class QWenBlock(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.attn = QWenAttention( config.hidden_size, config.num_attention_heads, config.max_position_embeddings, rope_parameters=config.rope_parameters, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.mlp = QWenMLP( config.hidden_size, config.intermediate_size // 2, quant_config=quant_config ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.ln_1(hidden_states) else: hidden_states, residual = self.ln_1(hidden_states, residual) hidden_states = self.attn( positions=positions, hidden_states=hidden_states, ) # Fully Connected hidden_states, residual = self.ln_2(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_torch_compile class QWenModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.vocab_size = config.vocab_size self.wte = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.start_layer, self.end_layer, self.h = make_layers( config.num_hidden_layers, lambda prefix: QWenBlock(config, cache_config, quant_config, prefix=prefix), prefix=f"{prefix}.h", ) self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.wte(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in islice(self.h, self.start_layer, self.end_layer): hidden_states, residual = layer( positions, hidden_states, residual, ) if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) hidden_states, _ = self.ln_f(hidden_states, residual) return hidden_states class QWenBaseModel(nn.Module): def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", transformer_type: type[QWenModel] = QWenModel, ) -> None: super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config self.quant_config = quant_config self.transformer = transformer_type( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "transformer") ) self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) if self.config.tie_word_embeddings: self.lm_head.weight = self.transformer.wte.weight self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.transformer.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.transformer.wte(input_ids) def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "w2", 0), ("gate_up_proj", "w1", 1), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class QWenLMHeadModel(QWenBaseModel, SupportsPP, SupportsLoRA): packed_modules_mapping = { "c_attn": ["c_attn"], "gate_up_proj": [ "w2", "w1", ], } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config if hasattr(config, "visual"): hf_overrides = {"architectures": ["QwenVLForConditionalGeneration"]} raise RuntimeError( "The configuration of this model indicates that it supports " "vision inputs, but you instantiated the text-only version " "of this model. Please use the vision model by setting " f"`--hf-overrides '{json.dumps(hf_overrides)}'`" ) super().__init__(vllm_config=vllm_config, prefix=prefix) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.transformer( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states