# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Iterable import torch from torch import nn from transformers import PretrainedConfig from vllm.attention.layers.encoder_only_attention import EncoderOnlyAttention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import ( divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce, ) from vllm.model_executor.layers.activation import get_act_and_mul_fn, get_act_fn from vllm.model_executor.layers.fused_moe import activation_without_mul, fused_topk from vllm.model_executor.layers.linear import ( ColumnParallelLinear, MergedColumnParallelLinear, QKVParallelLinear, ReplicatedLinear, RowParallelLinear, ) from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.models.utils import ( AutoWeightsLoader, WeightsMapper, maybe_prefix, ) from vllm.model_executor.utils import set_weight_attrs from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors from ..layers.pooler import ClassifierPooler, DispatchPooler, Pooler from .bert import BertPooler from .interfaces import SupportsCrossEncoding, SupportsQuant from .interfaces_base import default_pooling_type class BertWithRopeEmbedding(nn.Module): def __init__(self, config: PretrainedConfig): super().__init__() if config.position_embedding_type not in ["rope", "rotary"]: raise ValueError( "Only 'rotary'('rope') position_embedding_type" + " is supported" ) self.word_embeddings = VocabParallelEmbedding( config.vocab_size, config.hidden_size ) if config.type_vocab_size > 0: self.token_type_embeddings = VocabParallelEmbedding( config.type_vocab_size, config.hidden_size ) else: self.token_type_embeddings = None self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, input_ids: torch.Tensor, token_type_ids: torch.Tensor | None = None, ) -> torch.Tensor: input_shape = input_ids.size() inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.token_type_embeddings is not None: if token_type_ids is None: token_type_ids = torch.zeros( input_shape, dtype=torch.long, device=inputs_embeds.device ) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings += token_type_embeddings embeddings = self.LayerNorm(embeddings) return embeddings class BertWithRopeAttention(nn.Module): def __init__( self, hidden_size: int, num_attention_heads: int, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, bias: bool = True, rotary_kwargs: dict | None = None, prefix: str = "", ): super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_attention_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = self.total_num_heads self.head_dim = self.hidden_size // self.total_num_heads assert self.head_dim * self.total_num_heads == self.hidden_size self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.qkv_proj = QKVParallelLinear( hidden_size=self.hidden_size, head_size=self.head_dim, total_num_heads=self.total_num_heads, total_num_kv_heads=self.total_num_kv_heads, bias=bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.rotary_emb = get_rope(**rotary_kwargs) self.attn = EncoderOnlyAttention( num_heads=self.num_heads, head_size=self.head_dim, scale=self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) self.out_proj = RowParallelLinear( input_size=hidden_size, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.dense", ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.out_proj(attn_output) return output class BertWithRopeGatedMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, bias: bool = True, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.act_fn = get_act_and_mul_fn(hidden_act) self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=bias, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( input_size=intermediate_size, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: gate_up, _ = self.gate_up_proj(hidden_states) hidden_states = self.act_fn(gate_up) hidden_states, _ = self.down_proj(hidden_states) return hidden_states class BertWithRopeMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, bias: bool = True, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.act_fn = get_act_fn(hidden_act) self.up_proj = ColumnParallelLinear( input_size=hidden_size, output_size=intermediate_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.up_proj", ) self.down_proj = RowParallelLinear( input_size=intermediate_size, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.up_proj(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states, _ = self.down_proj(hidden_states) return hidden_states class NomicMoE(nn.Module): def __init__( self, num_experts: int, top_k: int, hidden_size: int, intermediate_size: int, hidden_act: str, params_dtype: torch.dtype | None = None, tp_size: int | None = None, ): super().__init__() self.tp_size = tp_size or get_tensor_model_parallel_world_size() self.num_total_experts = num_experts self.top_k = top_k self.hidden_size = hidden_size self.total_intermediate_size = intermediate_size self.intermediate_size = divide(intermediate_size, self.tp_size) self.hidden_act = activation_without_mul(hidden_act) if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype self.router = ReplicatedLinear( self.hidden_size, self.num_total_experts, bias=False ) self.w1 = nn.Parameter( torch.empty( self.num_total_experts, self.intermediate_size, self.hidden_size, device=current_platform.device_type, dtype=self.params_dtype, ) ) self.w2 = nn.Parameter( torch.empty( self.num_total_experts, self.hidden_size, self.intermediate_size, device=current_platform.device_type, dtype=self.params_dtype, ) ) self.bias = nn.Parameter(torch.zeros(self.hidden_size)) set_weight_attrs( self.w1, { "weight_loader": self.weight_loader, }, ) set_weight_attrs( self.w2, { "weight_loader": self.weight_loader, }, ) def weight_loader( self, param: nn.Parameter, loaded_weight: torch.Tensor, weight_name: str, ): # NOTE: Nomic-MoE has fused experts weights with shape # (num_experts * intermediate_size, hidden_size) tp_rank = get_tensor_model_parallel_rank() param_data = param.data shard_size = self.intermediate_size shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size) if weight_name.endswith("w1"): loaded_weight = loaded_weight.reshape( self.num_total_experts, self.total_intermediate_size, self.hidden_size, )[:, shard] if weight_name.endswith("w2"): loaded_weight = loaded_weight.reshape( self.num_total_experts, self.total_intermediate_size, self.hidden_size, )[:, shard].transpose(1, 2) param_data.copy_(loaded_weight) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_size = hidden_states.shape hidden_states = hidden_states.view(-1, self.hidden_size) # router_logits: (num_tokens, n_experts) router_logits, _ = self.router(hidden_states) # FIXME(Isotr0py): This implementation is too tricky, # we should use FusedMoE instead in the future # after supporting ungated activation for it. topk_weights, topk_ids, _ = fused_topk( hidden_states, router_logits, self.top_k, renormalize=False ) final_hidden_states = torch.ops.vllm.outplace_fused_experts( hidden_states=hidden_states, w1=self.w1, w2=self.w2, topk_weights=topk_weights, topk_ids=topk_ids, activation=self.hidden_act, ) if self.tp_size > 1: final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states) return final_hidden_states.view(num_tokens, hidden_size) + self.bias class BertWithRopeBlock(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, moe: bool = False, bias: bool = True, rotary_kwargs: dict | None = None, prefix: str = "", ): super().__init__() self.attn = BertWithRopeAttention( hidden_size=config.hidden_size, num_attention_heads=config.num_attention_heads, cache_config=cache_config, quant_config=quant_config, bias=bias, rotary_kwargs=rotary_kwargs, prefix=f"{prefix}.attention", ) if moe: self.mlp = NomicMoE( num_experts=config.num_experts, top_k=config.moe_top_k, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) else: if config.hidden_act in ["silu", "geglu"]: self.mlp = BertWithRopeGatedMLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, bias=bias, quant_config=quant_config, prefix=f"{prefix}.mlp", ) else: self.mlp = BertWithRopeMLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, bias=bias, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.attn_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, positions: torch.Tensor, hidden_states: torch.Tensor): attn_output = self.attn(positions, hidden_states) hidden_states = self.attn_ln(hidden_states + attn_output) mlp_out = self.mlp(hidden_states) hidden_states = self.mlp_ln(hidden_states + mlp_out) return hidden_states class BertWithRopeEncoder(nn.Module): def __init__( self, vllm_config: VllmConfig, bias: bool = True, rotary_kwargs: dict | None = None, prefix: str = "", ): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config every_n = getattr(config, "moe_every_n_layers", 0) self.layers = nn.ModuleList( [ BertWithRopeBlock( config=config, cache_config=cache_config, quant_config=quant_config, bias=bias, moe=every_n > 0 and (layer_idx % every_n == 1), rotary_kwargs=rotary_kwargs, prefix=f"{prefix}.layer.{layer_idx}", ) for layer_idx in range(config.num_hidden_layers) ] ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: for layer in self.layers: hidden_states = layer(positions, hidden_states) return hidden_states @support_torch_compile @default_pooling_type("CLS") class BertWithRope(nn.Module, SupportsQuant): hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""}) def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", add_pooling_layer: bool = False, ): super().__init__() self.vllm_config = vllm_config self.add_pooling_layer = add_pooling_layer self.config = vllm_config.model_config.hf_config self.embeddings = BertWithRopeEmbedding(self.config) self.encoder = BertWithRopeEncoder( vllm_config=vllm_config, bias=getattr(self.config, "bias", True), rotary_kwargs=self.config.rotary_kwargs, prefix=f"{prefix}.encoder", ) self.pooler = BertPooler(self.config) if add_pooling_layer else None def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, token_type_ids: torch.Tensor | None = None, ) -> torch.Tensor: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids ) return self.encoder(positions, hidden_states) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: weights = self.hf_to_vllm_mapper.apply(weights) if self.config.hidden_act in ["silu", "geglu"]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] else: stacked_params_mapping = [] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if not self.add_pooling_layer and "pooler" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) if name.endswith((".w1", ".w2")): # Nomic-MoE has fused experts weights weight_loader(param, loaded_weight, name) else: weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class NomicBertModel(BertWithRope): # for https://huggingface.co/nomic-ai/nomic-bert-2048 hf_to_vllm_mapper = WeightsMapper( orig_to_new_substr={ "emb_ln": "embeddings.LayerNorm", "attn.Wqkv": "attn.qkv_proj", "norm1": "attn_ln", "mlp.fc1.": "mlp.up_proj.", "mlp.fc11": "mlp.up_proj", "mlp.fc12": "mlp.gate_proj", "mlp.fc2": "mlp.down_proj", "norm2": "mlp_ln", # MoE mapping "experts.mlp.": "", "experts.": "", "router.layer": "router", } ) class GteNewModel(BertWithRope): # for https://huggingface.co/Alibaba-NLP/new-impl hf_to_vllm_mapper = WeightsMapper( orig_to_new_substr={ "new.": "", "layer": "layers", "attention.qkv_proj": "attn.qkv_proj", "attention.o_proj": "attn.out_proj", } ) def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs): super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs) # GteNewModel only gate_up_proj does not have bias. # Hack method learned from vllm/model_executor/models/glm.py for layer in self.encoder.layers: layer.mlp.gate_up_proj.bias = None layer.mlp.gate_up_proj.skip_bias_add = True def split_up_gate_proj(self, weights: Iterable[tuple[str, torch.Tensor]]): n = "mlp.up_gate_proj" for name, weight in weights: if n in name: up, gate = weight.chunk(2, dim=0) yield name.replace(n, "mlp.up_proj"), up yield name.replace(n, "mlp.gate_proj"), gate else: yield name, weight def ignore_unnecessary_layers(self, weights: Iterable[tuple[str, torch.Tensor]]): for name, weight in weights: if name.startswith("classifier"): continue yield name, weight def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: weights = self.ignore_unnecessary_layers(weights) weights = self.split_up_gate_proj(weights) return super().load_weights(weights) class SnowflakeGteNewModel(GteNewModel): # for Snowflake/snowflake-arctic-embed-m-v2.0 hf_to_vllm_mapper = WeightsMapper( orig_to_new_substr={ "layer": "layers", "attention.qkv_proj": "attn.qkv_proj", "attention.o_proj": "attn.out_proj", } ) class JinaRobertaModel(BertWithRope): # for https://huggingface.co/jinaai/jina-embeddings-v3 hf_to_vllm_mapper = WeightsMapper( orig_to_new_substr={ "emb_ln": "embeddings.LayerNorm", "mixer.Wqkv": "attn.qkv_proj", "mixer.out_proj": "attn.out_proj", "norm1": "attn_ln", "mlp.fc1.": "mlp.up_proj.", "mlp.fc2": "mlp.down_proj", "norm2": "mlp_ln", } ) @torch.inference_mode() def jina_merge_lora_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): # use for jina-embeddings-v3 # Merge Lora weights into a single weight tensor. # This is a temporary solution until we have a better way to handle scaling = self.config.lora_alpha / self.config.lora_rank device = self.vllm_config.device_config.device weights = {name: weight for name, weight in weights} o = ".original" a = ".0.lora_A" b = ".0.lora_B" # text-matching i = -1 for name in list(weights.keys()): if o in name: dtype = weights[name].dtype shape = weights[name].shape weight_name = name[: -len(o)] if "embeddings" in weight_name: B = weights[weight_name + a][i].to(device).float() A = weights[weight_name + b][i].to(device).float() else: B = weights[weight_name + b][i].to(device).float() A = weights[weight_name + a][i].to(device).float() weight = ( weights[weight_name + o].to(device) + torch.matmul(B, A).view(shape) * scaling ) weight = weight.cpu().to(dtype) weights[weight_name.replace(".parametrizations", "")] = weight del ( weights[weight_name + o], weights[weight_name + a], weights[weight_name + b], ) return [(name, weight) for name, weight in weights.items()] def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: weights = self.jina_merge_lora_weights(weights) return super().load_weights(weights) @default_pooling_type("CLS") class GteNewForSequenceClassification(nn.Module, SupportsCrossEncoding): is_pooling_model = True def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.new = GteNewModel( vllm_config=vllm_config, prefix=prefix, add_pooling_layer=True ) self.classifier = ReplicatedLinear( config.hidden_size, config.num_labels, bias=True, quant_config=quant_config, params_dtype=vllm_config.model_config.head_dtype, prefix=maybe_prefix(prefix, "classifier"), return_bias=False, ) pooler_config = vllm_config.model_config.pooler_config assert pooler_config is not None self.pooler = DispatchPooler( { "token_classify": Pooler.for_token_classify( pooler_config, classifier=self.classifier ), "classify": ClassifierPooler( pooling=self.new.pooler, classifier=self.classifier, act_fn="classify", ), "score": ClassifierPooler( pooling=self.new.pooler, classifier=self.classifier, act_fn="score" ), } ) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): loader = AutoWeightsLoader(self) loaded_params = loader.load_weights(weights) return loaded_params def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.new.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor | None, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor: return self.new( input_ids=input_ids, positions=positions, inputs_embeds=inputs_embeds, intermediate_tensors=intermediate_tensors, )