# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import asyncio import json import sys import time import traceback from collections.abc import AsyncGenerator, Callable, Iterable, Mapping, Sequence from concurrent.futures import ThreadPoolExecutor from http import HTTPStatus from typing import Any, ClassVar, Generic, TypeAlias, TypeVar import torch from fastapi import Request from pydantic import BaseModel, ConfigDict, Field, TypeAdapter from starlette.datastructures import Headers from typing_extensions import TypeIs if sys.version_info >= (3, 12): from typing import TypedDict else: from typing_extensions import TypedDict from openai.types.responses import ( ToolChoiceFunction, ) import vllm.envs as envs from vllm.beam_search import BeamSearchSequence, create_sort_beams_key_function from vllm.engine.protocol import EngineClient from vllm.entrypoints.chat_utils import ( ChatCompletionMessageParam, ChatTemplateContentFormatOption, ConversationMessage, apply_hf_chat_template, apply_mistral_chat_template, parse_chat_messages_futures, resolve_chat_template_content_format, ) from vllm.entrypoints.context import ConversationContext from vllm.entrypoints.logger import RequestLogger from vllm.entrypoints.openai.protocol import ( ChatCompletionNamedToolChoiceParam, ChatCompletionRequest, ChatCompletionResponse, ClassificationRequest, ClassificationResponse, CompletionRequest, CompletionResponse, DetokenizeRequest, EmbeddingChatRequest, EmbeddingCompletionRequest, EmbeddingRequest, EmbeddingResponse, ErrorInfo, ErrorResponse, FunctionCall, FunctionDefinition, IOProcessorRequest, PoolingResponse, RerankRequest, ResponsesRequest, ScoreRequest, ScoreResponse, TokenizeChatRequest, TokenizeCompletionRequest, TokenizeResponse, TranscriptionRequest, TranscriptionResponse, TranslationRequest, ) from vllm.entrypoints.openai.serving_models import OpenAIServingModels from vllm.entrypoints.openai.tool_parsers import ToolParser, ToolParserManager from vllm.entrypoints.renderer import BaseRenderer, CompletionRenderer, RenderConfig from vllm.entrypoints.utils import _validate_truncation_size from vllm.inputs.data import PromptType from vllm.inputs.data import TokensPrompt as EngineTokensPrompt from vllm.inputs.parse import ( PromptComponents, get_prompt_components, is_explicit_encoder_decoder_prompt, ) from vllm.logger import init_logger from vllm.logprobs import Logprob, PromptLogprobs from vllm.lora.request import LoRARequest from vllm.multimodal import ( # noqa: F401 - Required to resolve Pydantic error in RequestProcessingMixin MultiModalDataDict, MultiModalUUIDDict, ) from vllm.outputs import CompletionOutput, PoolingRequestOutput, RequestOutput from vllm.pooling_params import PoolingParams from vllm.reasoning import ReasoningParser, ReasoningParserManager from vllm.sampling_params import BeamSearchParams, SamplingParams from vllm.tracing import ( contains_trace_headers, extract_trace_headers, log_tracing_disabled_warning, ) from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer from vllm.utils import random_uuid from vllm.utils.async_utils import ( AsyncMicrobatchTokenizer, collect_from_async_generator, make_async, merge_async_iterators, ) from vllm.utils.collection_utils import is_list_of from vllm.v1.engine import EngineCoreRequest logger = init_logger(__name__) CompletionLikeRequest: TypeAlias = ( CompletionRequest | DetokenizeRequest | EmbeddingCompletionRequest | RerankRequest | ClassificationRequest | ScoreRequest | TokenizeCompletionRequest ) ChatLikeRequest: TypeAlias = ( ChatCompletionRequest | EmbeddingChatRequest | TokenizeChatRequest ) SpeechToTextRequest: TypeAlias = TranscriptionRequest | TranslationRequest AnyRequest: TypeAlias = ( CompletionLikeRequest | ChatLikeRequest | SpeechToTextRequest | ResponsesRequest | IOProcessorRequest ) AnyResponse: TypeAlias = ( CompletionResponse | ChatCompletionResponse | EmbeddingResponse | TranscriptionResponse | TokenizeResponse | PoolingResponse | ClassificationResponse | ScoreResponse ) class TextTokensPrompt(TypedDict): prompt: str prompt_token_ids: list[int] class EmbedsPrompt(TypedDict): prompt_embeds: torch.Tensor RequestPrompt: TypeAlias = list[int] | str | TextTokensPrompt | EmbedsPrompt def is_text_tokens_prompt(prompt: RequestPrompt) -> TypeIs[TextTokensPrompt]: return ( isinstance(prompt, dict) and "prompt_token_ids" in prompt and "prompt_embeds" not in prompt ) def is_embeds_prompt(prompt: RequestPrompt) -> TypeIs[EmbedsPrompt]: return ( isinstance(prompt, dict) and "prompt_token_ids" not in prompt and "prompt_embeds" in prompt ) RequestT = TypeVar("RequestT", bound=AnyRequest) class RequestProcessingMixin(BaseModel): """ Mixin for request processing, handling prompt preparation and engine input. """ request_prompts: Sequence[RequestPrompt] | None = [] engine_prompts: list[EngineTokensPrompt] | None = [] model_config = ConfigDict(arbitrary_types_allowed=True) class ResponseGenerationMixin(BaseModel): """ Mixin for response generation, managing result generators and final batch results. """ result_generator: ( AsyncGenerator[tuple[int, RequestOutput | PoolingRequestOutput], None] | None ) = None final_res_batch: list[RequestOutput | PoolingRequestOutput] = Field( default_factory=list ) model_config = ConfigDict(arbitrary_types_allowed=True) class ServeContext( RequestProcessingMixin, ResponseGenerationMixin, BaseModel, Generic[RequestT], ): # Shared across all requests request: RequestT raw_request: Request | None = None model_name: str request_id: str created_time: int = Field(default_factory=lambda: int(time.time())) lora_request: LoRARequest | None = None # Shared across most requests tokenizer: AnyTokenizer | None = None # `protected_namespaces` resolves Pydantic v2's warning # on conflict with protected namespace "model_" model_config = ConfigDict( protected_namespaces=(), arbitrary_types_allowed=True, ) ClassificationServeContext = ServeContext[ClassificationRequest] class EmbeddingServeContext(ServeContext[EmbeddingRequest]): chat_template: str | None = None chat_template_content_format: ChatTemplateContentFormatOption # Used to resolve the Pydantic error related to # forward reference of MultiModalDataDict in TokensPrompt RequestProcessingMixin.model_rebuild() ServeContext.model_rebuild() ClassificationServeContext.model_rebuild() EmbeddingServeContext.model_rebuild() class OpenAIServing: request_id_prefix: ClassVar[str] = """ A short string prepended to every request’s ID (e.g. "embd", "classify") so you can easily tell “this ID came from Embedding vs Classification.” """ def __init__( self, engine_client: EngineClient, models: OpenAIServingModels, *, request_logger: RequestLogger | None, return_tokens_as_token_ids: bool = False, log_error_stack: bool = False, ): super().__init__() self.engine_client = engine_client self.models = models self.request_logger = request_logger self.return_tokens_as_token_ids = return_tokens_as_token_ids self._tokenizer_executor = ThreadPoolExecutor(max_workers=1) self._apply_mistral_chat_template_async = make_async( apply_mistral_chat_template, executor=self._tokenizer_executor ) self._async_tokenizer_pool: dict[AnyTokenizer, AsyncMicrobatchTokenizer] = {} self.log_error_stack = log_error_stack self.processor = self.models.processor self.io_processor = self.models.io_processor self.model_config = self.models.model_config self.max_model_len = self.model_config.max_model_len def _get_tool_parser( self, tool_parser_name: str | None = None, enable_auto_tools: bool = False ) -> Callable[[AnyTokenizer], ToolParser] | None: """Get the tool parser based on the name.""" parser = None if not enable_auto_tools or tool_parser_name is None: return parser logger.info( '"auto" tool choice has been enabled please note that while' " the parallel_tool_calls client option is preset for " "compatibility reasons, it will be ignored." ) try: if tool_parser_name == "pythonic" and self.model_config.model.startswith( "meta-llama/Llama-3.2" ): logger.warning( "Llama3.2 models may struggle to emit valid pythonic tool calls" ) parser = ToolParserManager.get_tool_parser(tool_parser_name) except Exception as e: raise TypeError( "Error: --enable-auto-tool-choice requires " f"tool_parser:'{tool_parser_name}' which has not " "been registered" ) from e return parser def _get_reasoning_parser( self, reasoning_parser_name: str, ) -> Callable[[AnyTokenizer], ReasoningParser] | None: """Get the reasoning parser based on the name.""" parser = None if not reasoning_parser_name: return None try: parser = ReasoningParserManager.get_reasoning_parser(reasoning_parser_name) assert parser is not None except Exception as e: raise TypeError(f"{reasoning_parser_name=} has not been registered") from e return parser async def reset_mm_cache(self) -> None: self.processor.clear_mm_cache() await self.engine_client.reset_mm_cache() async def beam_search( self, prompt: PromptType, request_id: str, params: BeamSearchParams, lora_request: LoRARequest | None = None, ) -> AsyncGenerator[RequestOutput, None]: beam_width = params.beam_width max_tokens = params.max_tokens ignore_eos = params.ignore_eos temperature = params.temperature length_penalty = params.length_penalty include_stop_str_in_output = params.include_stop_str_in_output processor = self.processor tokenizer = processor.tokenizer if tokenizer is None: raise ValueError( "You cannot use beam search when `skip_tokenizer_init` is True" ) eos_token_id: int = tokenizer.eos_token_id # type: ignore if is_explicit_encoder_decoder_prompt(prompt): raise NotImplementedError prompt_text: str | None prompt_token_ids: list[int] multi_modal_data: MultiModalDataDict | None if isinstance(prompt, str): prompt_text = prompt prompt_token_ids = [] multi_modal_data = None else: prompt_text = prompt.get("prompt") # type: ignore prompt_token_ids = prompt.get("prompt_token_ids", []) # type: ignore multi_modal_data = prompt.get("multi_modal_data") # type: ignore mm_processor_kwargs: dict[str, Any] | None = None # This is a workaround to fix multimodal beam search; this is a # bandaid fix for 2 small problems: # 1. Multi_modal_data on the processed_inputs currently resolves to # `None`. # 2. preprocessing above expands the multimodal placeholders. However, # this happens again in generation, so the double expansion causes # a mismatch. # TODO - would be ideal to handle this more gracefully. tokenized_length = len(prompt_token_ids) sort_beams_key = create_sort_beams_key_function(eos_token_id, length_penalty) beam_search_params = SamplingParams( logprobs=2 * beam_width, max_tokens=1, temperature=temperature, ) all_beams = [ BeamSearchSequence( tokens=prompt_token_ids, cum_logprob=0, logprobs=[], multi_modal_data=multi_modal_data, mm_processor_kwargs=mm_processor_kwargs, lora_request=lora_request, ) ] completed = [] for _ in range(max_tokens): prompts_batch, lora_req_batch = zip( *[ ( EngineTokensPrompt( prompt_token_ids=beam.tokens, multi_modal_data=beam.multi_modal_data, mm_processor_kwargs=beam.mm_processor_kwargs, ), beam.lora_request, ) for beam in all_beams ] ) tasks = [] request_id_batch = f"{request_id}-{random_uuid()}" for i, (individual_prompt, lora_req) in enumerate( zip(prompts_batch, lora_req_batch) ): request_id_item = f"{request_id_batch}-beam-{i}" task = asyncio.create_task( collect_from_async_generator( self.engine_client.generate( individual_prompt, beam_search_params, request_id_item, lora_request=lora_req, ) ) ) tasks.append(task) output = [x[0] for x in await asyncio.gather(*tasks)] new_beams = [] for i, current_beam in enumerate(all_beams): result = output[i] if result.outputs[0].logprobs is not None: logprobs = result.outputs[0].logprobs[0] for token_id, logprob_obj in logprobs.items(): if token_id == eos_token_id and not ignore_eos: completed.append( BeamSearchSequence( tokens=current_beam.tokens + [token_id] if include_stop_str_in_output else current_beam.tokens, logprobs=current_beam.logprobs + [logprobs], cum_logprob=current_beam.cum_logprob + logprob_obj.logprob, finish_reason="stop", stop_reason=eos_token_id, ) ) else: new_beams.append( BeamSearchSequence( tokens=current_beam.tokens + [token_id], logprobs=current_beam.logprobs + [logprobs], lora_request=current_beam.lora_request, cum_logprob=current_beam.cum_logprob + logprob_obj.logprob, multi_modal_data=current_beam.multi_modal_data, mm_processor_kwargs=current_beam.mm_processor_kwargs, ) ) sorted_beams = sorted(new_beams, key=sort_beams_key, reverse=True) all_beams = sorted_beams[:beam_width] completed.extend(all_beams) sorted_completed = sorted(completed, key=sort_beams_key, reverse=True) best_beams = sorted_completed[:beam_width] for beam in best_beams: if beam.tokens[-1] == eos_token_id and not ignore_eos: # Skip the eos token in the text. tokens = beam.tokens[tokenized_length:-1] else: tokens = beam.tokens[tokenized_length:] beam.text = tokenizer.decode(tokens) yield RequestOutput( request_id=request_id, prompt=prompt_text, outputs=[ CompletionOutput( text=beam.text, # type: ignore cumulative_logprob=beam.cum_logprob, token_ids=beam.tokens[tokenized_length:], index=i, logprobs=beam.logprobs, finish_reason=beam.finish_reason if beam.finish_reason is not None else "length", stop_reason=beam.stop_reason, ) for (i, beam) in enumerate(best_beams) ], finished=True, prompt_token_ids=prompt_token_ids, prompt_logprobs=None, ) def _get_renderer(self, tokenizer: AnyTokenizer | None) -> BaseRenderer: """ Get a Renderer instance with the provided tokenizer. Uses shared async tokenizer pool for efficiency. """ return CompletionRenderer( model_config=self.model_config, tokenizer=tokenizer, async_tokenizer_pool=self._async_tokenizer_pool, ) def _build_render_config( self, request: Any, ) -> RenderConfig: """ Build and return a `RenderConfig` for an endpoint. Used by the renderer to control how prompts are prepared (e.g., tokenization and length handling). Endpoints should implement this with logic appropriate to their request type. """ raise NotImplementedError def _get_async_tokenizer(self, tokenizer) -> AsyncMicrobatchTokenizer: """ Return (and cache) an `AsyncMicrobatchTokenizer` bound to the given tokenizer. """ async_tokenizer = self._async_tokenizer_pool.get(tokenizer) if async_tokenizer is None: async_tokenizer = AsyncMicrobatchTokenizer(tokenizer) self._async_tokenizer_pool[tokenizer] = async_tokenizer return async_tokenizer async def _preprocess( self, ctx: ServeContext, ) -> ErrorResponse | None: """ Default preprocessing hook. Subclasses may override to prepare `ctx` (classification, embedding, etc.). """ return None def _build_response( self, ctx: ServeContext, ) -> AnyResponse | ErrorResponse: """ Default response builder. Subclass may override this method to return the appropriate response object. """ return self.create_error_response("unimplemented endpoint") async def handle( self, ctx: ServeContext, ) -> AnyResponse | ErrorResponse: generation: AsyncGenerator[AnyResponse | ErrorResponse, None] generation = self._pipeline(ctx) async for response in generation: return response return self.create_error_response("No response yielded from pipeline") async def _pipeline( self, ctx: ServeContext, ) -> AsyncGenerator[AnyResponse | ErrorResponse, None]: """Execute the request processing pipeline yielding responses.""" if error := await self._check_model(ctx.request): yield error if error := self._validate_request(ctx): yield error preprocess_ret = await self._preprocess(ctx) if isinstance(preprocess_ret, ErrorResponse): yield preprocess_ret generators_ret = await self._prepare_generators(ctx) if isinstance(generators_ret, ErrorResponse): yield generators_ret collect_ret = await self._collect_batch(ctx) if isinstance(collect_ret, ErrorResponse): yield collect_ret yield self._build_response(ctx) def _validate_request(self, ctx: ServeContext) -> ErrorResponse | None: truncate_prompt_tokens = getattr(ctx.request, "truncate_prompt_tokens", None) if ( truncate_prompt_tokens is not None and truncate_prompt_tokens > self.max_model_len ): return self.create_error_response( "truncate_prompt_tokens value is " "greater than max_model_len." " Please, select a smaller truncation size." ) return None def _create_pooling_params( self, ctx: ServeContext, ) -> PoolingParams | ErrorResponse: if not hasattr(ctx.request, "to_pooling_params"): return self.create_error_response( "Request type does not support pooling parameters" ) return ctx.request.to_pooling_params() async def _prepare_generators( self, ctx: ServeContext, ) -> ErrorResponse | None: """Schedule the request and get the result generator.""" generators: list[ AsyncGenerator[RequestOutput | PoolingRequestOutput, None] ] = [] try: trace_headers = ( None if ctx.raw_request is None else await self._get_trace_headers(ctx.raw_request.headers) ) pooling_params = self._create_pooling_params(ctx) if isinstance(pooling_params, ErrorResponse): return pooling_params if ctx.engine_prompts is None: return self.create_error_response("Engine prompts not available") for i, engine_prompt in enumerate(ctx.engine_prompts): request_id_item = f"{ctx.request_id}-{i}" self._log_inputs( request_id_item, engine_prompt, params=pooling_params, lora_request=ctx.lora_request, ) generator = self.engine_client.encode( engine_prompt, pooling_params, request_id_item, lora_request=ctx.lora_request, trace_headers=trace_headers, priority=getattr(ctx.request, "priority", 0), ) generators.append(generator) ctx.result_generator = merge_async_iterators(*generators) return None except Exception as e: # TODO: Use a vllm-specific Validation Error return self.create_error_response(str(e)) async def _collect_batch( self, ctx: ServeContext, ) -> ErrorResponse | None: """Collect batch results from the result generator.""" try: if ctx.engine_prompts is None: return self.create_error_response("Engine prompts not available") num_prompts = len(ctx.engine_prompts) final_res_batch: list[RequestOutput | PoolingRequestOutput | None] final_res_batch = [None] * num_prompts if ctx.result_generator is None: return self.create_error_response("Result generator not available") async for i, res in ctx.result_generator: final_res_batch[i] = res if None in final_res_batch: return self.create_error_response( "Failed to generate results for all prompts" ) ctx.final_res_batch = [res for res in final_res_batch if res is not None] return None except Exception as e: return self.create_error_response(str(e)) def create_error_response( self, message: str, err_type: str = "BadRequestError", status_code: HTTPStatus = HTTPStatus.BAD_REQUEST, ) -> ErrorResponse: if self.log_error_stack: exc_type, _, _ = sys.exc_info() if exc_type is not None: traceback.print_exc() else: traceback.print_stack() return ErrorResponse( error=ErrorInfo(message=message, type=err_type, code=status_code.value) ) def create_streaming_error_response( self, message: str, err_type: str = "BadRequestError", status_code: HTTPStatus = HTTPStatus.BAD_REQUEST, ) -> str: json_str = json.dumps( self.create_error_response( message=message, err_type=err_type, status_code=status_code ).model_dump() ) return json_str async def _check_model( self, request: AnyRequest, ) -> ErrorResponse | None: error_response = None if self._is_model_supported(request.model): return None if request.model in self.models.lora_requests: return None if ( envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING and request.model and (load_result := await self.models.resolve_lora(request.model)) ): if isinstance(load_result, LoRARequest): return None if ( isinstance(load_result, ErrorResponse) and load_result.error.code == HTTPStatus.BAD_REQUEST.value ): error_response = load_result return error_response or self.create_error_response( message=f"The model `{request.model}` does not exist.", err_type="NotFoundError", status_code=HTTPStatus.NOT_FOUND, ) def _get_active_default_mm_loras(self, request: AnyRequest) -> LoRARequest | None: """Determine if there are any active default multimodal loras.""" # TODO: Currently this is only enabled for chat completions # to be better aligned with only being enabled for .generate # when run offline. It would be nice to support additional # tasks types in the future. message_types = self._get_message_types(request) default_mm_loras = set() for lora in self.models.lora_requests.values(): # Best effort match for default multimodal lora adapters; # There is probably a better way to do this, but currently # this matches against the set of 'types' in any content lists # up until '_', e.g., to match audio_url -> audio if lora.lora_name in message_types: default_mm_loras.add(lora) # Currently only support default modality specific loras if # we have exactly one lora matched on the request. if len(default_mm_loras) == 1: return default_mm_loras.pop() return None def _maybe_get_adapters( self, request: AnyRequest, supports_default_mm_loras: bool = False, ) -> LoRARequest | None: if request.model in self.models.lora_requests: return self.models.lora_requests[request.model] # Currently only support default modality specific loras # if we have exactly one lora matched on the request. if supports_default_mm_loras: default_mm_lora = self._get_active_default_mm_loras(request) if default_mm_lora is not None: return default_mm_lora if self._is_model_supported(request.model): return None # if _check_model has been called earlier, this will be unreachable raise ValueError(f"The model `{request.model}` does not exist.") def _get_message_types(self, request: AnyRequest) -> set[str]: """Retrieve the set of types from message content dicts up until `_`; we use this to match potential multimodal data with default per modality loras. """ message_types: set[str] = set() if not hasattr(request, "messages"): return message_types for message in request.messages: if ( isinstance(message, dict) and "content" in message and isinstance(message["content"], list) ): for content_dict in message["content"]: if "type" in content_dict: message_types.add(content_dict["type"].split("_")[0]) return message_types async def _normalize_prompt_text_to_input( self, request: AnyRequest, prompt: str, tokenizer: AnyTokenizer, add_special_tokens: bool, ) -> TextTokensPrompt: async_tokenizer = self._get_async_tokenizer(tokenizer) if ( self.model_config.encoder_config is not None and self.model_config.encoder_config.get("do_lower_case", False) ): prompt = prompt.lower() truncate_prompt_tokens = getattr(request, "truncate_prompt_tokens", None) if truncate_prompt_tokens is None: encoded = await async_tokenizer( prompt, add_special_tokens=add_special_tokens ) elif truncate_prompt_tokens < 0: # Negative means we cap at the model's max length encoded = await async_tokenizer( prompt, add_special_tokens=add_special_tokens, truncation=True, max_length=self.max_model_len, ) else: encoded = await async_tokenizer( prompt, add_special_tokens=add_special_tokens, truncation=True, max_length=truncate_prompt_tokens, ) input_ids = encoded.input_ids input_text = prompt return self._validate_input(request, input_ids, input_text) async def _normalize_prompt_tokens_to_input( self, request: AnyRequest, prompt_ids: list[int], tokenizer: AnyTokenizer | None, ) -> TextTokensPrompt: truncate_prompt_tokens = getattr(request, "truncate_prompt_tokens", None) if truncate_prompt_tokens is None: input_ids = prompt_ids elif truncate_prompt_tokens < 0: input_ids = prompt_ids[-self.max_model_len :] else: input_ids = prompt_ids[-truncate_prompt_tokens:] if tokenizer is None: input_text = "" else: async_tokenizer = self._get_async_tokenizer(tokenizer) input_text = await async_tokenizer.decode(input_ids) return self._validate_input(request, input_ids, input_text) def _validate_input( self, request: AnyRequest, input_ids: list[int], input_text: str, ) -> TextTokensPrompt: token_num = len(input_ids) # Note: EmbeddingRequest, ClassificationRequest, # and ScoreRequest doesn't have max_tokens if isinstance( request, ( EmbeddingChatRequest, EmbeddingCompletionRequest, ScoreRequest, RerankRequest, ClassificationRequest, ), ): # Note: input length can be up to the entire model context length # since these requests don't generate tokens. if token_num > self.max_model_len: operations: dict[type[AnyRequest], str] = { ScoreRequest: "score", ClassificationRequest: "classification", } operation = operations.get(type(request), "embedding generation") raise ValueError( f"This model's maximum context length is " f"{self.max_model_len} tokens. However, you requested " f"{token_num} tokens in the input for {operation}. " f"Please reduce the length of the input." ) return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids) # Note: TokenizeRequest and DetokenizeRequest doesn't have max_tokens # and does not require model context length validation if isinstance( request, (TokenizeCompletionRequest, TokenizeChatRequest, DetokenizeRequest), ): return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids) # chat completion endpoint supports max_completion_tokens if isinstance(request, ChatCompletionRequest): # TODO(#9845): remove max_tokens when field dropped from OpenAI API max_tokens = request.max_completion_tokens or request.max_tokens else: max_tokens = getattr(request, "max_tokens", None) # Note: input length can be up to model context length - 1 for # completion-like requests. if token_num >= self.max_model_len: raise ValueError( f"This model's maximum context length is " f"{self.max_model_len} tokens. However, your request has " f"{token_num} input tokens. Please reduce the length of " "the input messages." ) if max_tokens is not None and token_num + max_tokens > self.max_model_len: raise ValueError( "'max_tokens' or 'max_completion_tokens' is too large: " f"{max_tokens}. This model's maximum context length is " f"{self.max_model_len} tokens and your request has " f"{token_num} input tokens ({max_tokens} > {self.max_model_len}" f" - {token_num})." ) return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids) async def _tokenize_prompt_input_async( self, request: AnyRequest, tokenizer: AnyTokenizer, prompt_input: str | list[int], add_special_tokens: bool = True, ) -> TextTokensPrompt: """ A simpler implementation that tokenizes a single prompt input. """ async for result in self._tokenize_prompt_inputs_async( request, tokenizer, [prompt_input], add_special_tokens=add_special_tokens, ): return result raise ValueError("No results yielded from tokenization") async def _tokenize_prompt_inputs_async( self, request: AnyRequest, tokenizer: AnyTokenizer, prompt_inputs: Iterable[str | list[int]], add_special_tokens: bool = True, ) -> AsyncGenerator[TextTokensPrompt, None]: """ A simpler implementation that tokenizes multiple prompt inputs. """ for prompt in prompt_inputs: if isinstance(prompt, str): yield await self._normalize_prompt_text_to_input( request, prompt=prompt, tokenizer=tokenizer, add_special_tokens=add_special_tokens, ) else: yield await self._normalize_prompt_tokens_to_input( request, prompt_ids=prompt, tokenizer=tokenizer, ) def _validate_chat_template( self, request_chat_template: str | None, chat_template_kwargs: dict[str, Any] | None, trust_request_chat_template: bool, ) -> ErrorResponse | None: if not trust_request_chat_template and ( request_chat_template is not None or ( chat_template_kwargs and chat_template_kwargs.get("chat_template") is not None ) ): return self.create_error_response( "Chat template is passed with request, but " "--trust-request-chat-template is not set. " "Refused request with untrusted chat template." ) return None async def _preprocess_chat( self, request: ChatLikeRequest | ResponsesRequest, tokenizer: AnyTokenizer, messages: list[ChatCompletionMessageParam], chat_template: str | None, chat_template_content_format: ChatTemplateContentFormatOption, add_generation_prompt: bool = True, continue_final_message: bool = False, tool_dicts: list[dict[str, Any]] | None = None, documents: list[dict[str, str]] | None = None, chat_template_kwargs: dict[str, Any] | None = None, tool_parser: Callable[[AnyTokenizer], ToolParser] | None = None, add_special_tokens: bool = False, ) -> tuple[ list[ConversationMessage], Sequence[RequestPrompt], list[EngineTokensPrompt], ]: model_config = self.model_config resolved_content_format = resolve_chat_template_content_format( chat_template, tool_dicts, chat_template_content_format, tokenizer, model_config=model_config, ) conversation, mm_data_future, mm_uuids = parse_chat_messages_futures( messages, model_config, tokenizer, content_format=resolved_content_format, ) _chat_template_kwargs: dict[str, Any] = dict( chat_template=chat_template, add_generation_prompt=add_generation_prompt, continue_final_message=continue_final_message, tools=tool_dicts, documents=documents, ) _chat_template_kwargs.update(chat_template_kwargs or {}) request_prompt: str | list[int] if tokenizer is None: request_prompt = "placeholder" elif isinstance(tokenizer, MistralTokenizer): request_prompt = await self._apply_mistral_chat_template_async( tokenizer, messages=messages, **_chat_template_kwargs, ) else: request_prompt = apply_hf_chat_template( tokenizer=tokenizer, conversation=conversation, model_config=model_config, **_chat_template_kwargs, ) mm_data = await mm_data_future # tool parsing is done only if a tool_parser has been set and if # tool_choice is not "none" (if tool_choice is "none" but a tool_parser # is set, we want to prevent parsing a tool_call hallucinated by the LLM should_parse_tools = tool_parser is not None and ( hasattr(request, "tool_choice") and request.tool_choice != "none" ) if should_parse_tools: if not isinstance(request, ChatCompletionRequest | ResponsesRequest): msg = ( "Tool usage is only supported for Chat Completions API " "or Responses API requests." ) raise NotImplementedError(msg) request = tool_parser(tokenizer).adjust_request(request=request) # type: ignore if tokenizer is None: assert isinstance(request_prompt, str), ( "Prompt has to be a string", "when the tokenizer is not initialised", ) prompt_inputs = TextTokensPrompt( prompt=request_prompt, prompt_token_ids=[1] ) elif isinstance(request_prompt, str): prompt_inputs = await self._tokenize_prompt_input_async( request, tokenizer, request_prompt, add_special_tokens=add_special_tokens, ) else: # For MistralTokenizer assert is_list_of(request_prompt, int), ( "Prompt has to be either a string or a list of token ids" ) prompt_inputs = TextTokensPrompt( prompt=tokenizer.decode(request_prompt), prompt_token_ids=request_prompt, ) engine_prompt = EngineTokensPrompt( prompt_token_ids=prompt_inputs["prompt_token_ids"] ) if mm_data is not None: engine_prompt["multi_modal_data"] = mm_data if mm_uuids is not None: engine_prompt["multi_modal_uuids"] = mm_uuids if request.mm_processor_kwargs is not None: engine_prompt["mm_processor_kwargs"] = request.mm_processor_kwargs if hasattr(request, "cache_salt") and request.cache_salt is not None: engine_prompt["cache_salt"] = request.cache_salt return conversation, [request_prompt], [engine_prompt] async def _process_inputs( self, request_id: str, engine_prompt: PromptType, params: SamplingParams | PoolingParams, *, lora_request: LoRARequest | None, trace_headers: Mapping[str, str] | None, priority: int, ) -> tuple[EngineCoreRequest, dict[str, Any]]: """Use the Processor to process inputs for AsyncLLM.""" tokenization_kwargs: dict[str, Any] = {} _validate_truncation_size( self.max_model_len, params.truncate_prompt_tokens, tokenization_kwargs ) engine_request = self.processor.process_inputs( request_id, engine_prompt, params, lora_request=lora_request, tokenization_kwargs=tokenization_kwargs, trace_headers=trace_headers, priority=priority, ) return engine_request, tokenization_kwargs async def _generate_with_builtin_tools( self, request_id: str, request_prompt: RequestPrompt, engine_prompt: EngineTokensPrompt, sampling_params: SamplingParams, context: ConversationContext, lora_request: LoRARequest | None = None, priority: int = 0, **kwargs, ): prompt_text, _, _ = self._get_prompt_components(request_prompt) orig_priority = priority while True: self._log_inputs( request_id, request_prompt, params=sampling_params, lora_request=lora_request, ) trace_headers = kwargs.get("trace_headers") engine_request, tokenization_kwargs = await self._process_inputs( request_id, engine_prompt, sampling_params, lora_request=lora_request, trace_headers=trace_headers, priority=priority, ) generator = self.engine_client.generate( engine_request, sampling_params, request_id, lora_request=lora_request, priority=priority, prompt_text=prompt_text, tokenization_kwargs=tokenization_kwargs, **kwargs, ) async for res in generator: context.append_output(res) # NOTE(woosuk): The stop condition is handled by the engine. yield context if not context.need_builtin_tool_call(): # The model did not ask for a tool call, so we're done. break # Call the tool and update the context with the result. tool_output = await context.call_tool() context.append_tool_output(tool_output) # TODO: uncomment this and enable tool output streaming # yield context # Create inputs for the next turn. # Render the next prompt token ids. prompt_token_ids = context.render_for_completion() engine_prompt = EngineTokensPrompt(prompt_token_ids=prompt_token_ids) request_prompt = prompt_token_ids # Update the sampling params. sampling_params.max_tokens = self.max_model_len - len(prompt_token_ids) # OPTIMIZATION priority = orig_priority - 1 def _get_prompt_components( self, prompt: RequestPrompt | PromptType, ) -> PromptComponents: if isinstance(prompt, list): return PromptComponents(token_ids=prompt) return get_prompt_components(prompt) # type: ignore[arg-type] def _log_inputs( self, request_id: str, inputs: RequestPrompt | PromptType, params: SamplingParams | PoolingParams | BeamSearchParams | None, lora_request: LoRARequest | None, ) -> None: if self.request_logger is None: return prompt, prompt_token_ids, prompt_embeds = self._get_prompt_components(inputs) self.request_logger.log_inputs( request_id, prompt, prompt_token_ids, prompt_embeds, params=params, lora_request=lora_request, ) async def _get_trace_headers( self, headers: Headers, ) -> Mapping[str, str] | None: is_tracing_enabled = await self.engine_client.is_tracing_enabled() if is_tracing_enabled: return extract_trace_headers(headers) if contains_trace_headers(headers): log_tracing_disabled_warning() return None @staticmethod def _base_request_id( raw_request: Request | None, default: str | None = None ) -> str | None: """Pulls the request id to use from a header, if provided""" default = default or random_uuid() if raw_request is None: return default return raw_request.headers.get("X-Request-Id", default) @staticmethod def _get_data_parallel_rank(raw_request: Request | None) -> int | None: """Pulls the data parallel rank from a header, if provided""" if raw_request is None: return None rank_str = raw_request.headers.get("X-data-parallel-rank") if rank_str is None: return None try: return int(rank_str) except ValueError: return None @staticmethod def _parse_tool_calls_from_content( request: ResponsesRequest | ChatCompletionRequest, tokenizer: AnyTokenizer, enable_auto_tools: bool, tool_parser_cls: Callable[[AnyTokenizer], ToolParser] | None, content: str | None = None, ) -> tuple[list[FunctionCall] | None, str | None]: function_calls = list[FunctionCall]() if request.tool_choice and isinstance(request.tool_choice, ToolChoiceFunction): assert content is not None # Forced Function Call function_calls.append( FunctionCall(name=request.tool_choice.name, arguments=content) ) content = None # Clear content since tool is called. elif request.tool_choice and isinstance( request.tool_choice, ChatCompletionNamedToolChoiceParam ): assert content is not None # Forced Function Call function_calls.append( FunctionCall(name=request.tool_choice.function.name, arguments=content) ) content = None # Clear content since tool is called. elif request.tool_choice == "required": assert content is not None tool_calls = TypeAdapter(list[FunctionDefinition]).validate_json(content) function_calls.extend( [ FunctionCall( name=tool_call.name, arguments=json.dumps(tool_call.parameters, ensure_ascii=False), ) for tool_call in tool_calls ] ) content = None # Clear content since tool is called. elif ( tool_parser_cls and enable_auto_tools and (request.tool_choice == "auto" or request.tool_choice is None) ): # Automatic Tool Call Parsing try: tool_parser = tool_parser_cls(tokenizer) except RuntimeError as e: logger.exception("Error in tool parser creation.") raise e tool_call_info = tool_parser.extract_tool_calls( content if content is not None else "", request=request, # type: ignore ) if tool_call_info is not None and tool_call_info.tools_called: # extract_tool_calls() returns a list of tool calls. function_calls.extend( FunctionCall( name=tool_call.function.name, arguments=tool_call.function.arguments, ) for tool_call in tool_call_info.tool_calls ) content = tool_call_info.content if content and content.strip() == "": content = None else: # No tool calls. return None, content return function_calls, content @staticmethod def _get_decoded_token( logprob: Logprob, token_id: int, tokenizer: AnyTokenizer, return_as_token_id: bool = False, ) -> str: if return_as_token_id: return f"token_id:{token_id}" if logprob.decoded_token is not None: return logprob.decoded_token return tokenizer.decode(token_id) def _is_model_supported(self, model_name: str | None) -> bool: if not model_name: return True return self.models.is_base_model(model_name) def clamp_prompt_logprobs( prompt_logprobs: PromptLogprobs | None, ) -> PromptLogprobs | None: if prompt_logprobs is None: return prompt_logprobs for logprob_dict in prompt_logprobs: if logprob_dict is None: continue for logprob_values in logprob_dict.values(): if logprob_values.logprob == float("-inf"): logprob_values.logprob = -9999.0 return prompt_logprobs