# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py # Copyright 2023 The vLLM team. # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GPT-2 model compatible with HuggingFace weights.""" from collections.abc import Iterable from itertools import islice import torch from torch import nn from transformers import GPT2Config from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed.parallel_state import ( get_pp_group, get_tensor_model_parallel_world_size, ) from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import ( ColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from ..layers.pooler import DispatchPooler, Pooler from .interfaces import SupportsCrossEncoding, SupportsPP from .utils import ( AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class GPT2Attention(nn.Module): def __init__( self, config: GPT2Config, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.hidden_size = config.hidden_size total_num_heads = config.num_attention_heads tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() assert total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = total_num_heads // tensor_model_parallel_world_size self.head_dim = self.hidden_size // total_num_heads self.scale = self.head_dim**-0.5 self.c_attn = QKVParallelLinear( self.hidden_size, self.head_dim, total_num_heads, bias=True, quant_config=quant_config, prefix=f"{prefix}.c_attn", ) self.c_proj = RowParallelLinear( self.hidden_size, self.hidden_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.c_proj", ) self.attn = Attention( self.num_heads, self.head_dim, scale=self.scale, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) def forward( self, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) attn_output = self.attn(q, k, v) attn_output, _ = self.c_proj(attn_output) return attn_output class GPT2MLP(nn.Module): def __init__( self, intermediate_size: int, config: GPT2Config, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() hidden_size = config.hidden_size self.c_fc = ColumnParallelLinear( hidden_size, intermediate_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.c_fc", ) self.c_proj = RowParallelLinear( intermediate_size, hidden_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.c_proj", ) self.act = get_act_fn(config.activation_function) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.c_proj(hidden_states) return hidden_states class GPT2Block(nn.Module): def __init__( self, config: GPT2Config, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPT2Attention( config, cache_config, quant_config, prefix=f"{prefix}.attn" ) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPT2MLP(inner_dim, config, quant_config, prefix=f"{prefix}.mlp") def forward( self, hidden_states: torch.Tensor, ) -> torch.Tensor: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_output = self.attn(hidden_states=hidden_states) # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states return hidden_states @support_torch_compile class GPT2Model(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config assert not config.add_cross_attention assert not config.scale_attn_by_inverse_layer_idx assert not config.reorder_and_upcast_attn self.embed_dim = config.hidden_size self.wte = VocabParallelEmbedding( config.vocab_size, self.embed_dim, quant_config=quant_config, prefix=f"{prefix}.wte", ) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.start_layer, self.end_layer, self.h = make_layers( config.num_hidden_layers, lambda prefix: GPT2Block(config, cache_config, quant_config, prefix=prefix), prefix=f"{prefix}.h", ) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states"], config.n_embd ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.wte(input_ids) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is None: inputs_embeds = self.get_input_embeddings(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] for layer in islice(self.h, self.start_layer, self.end_layer): hidden_states = layer(hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({"hidden_states": hidden_states}) hidden_states = self.ln_f(hidden_states) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: set[str] = set() for name, loaded_weight in weights: if ".attn.bias" in name or ".attn.masked_bias" in name: # Skip attention mask. # NOTE: "c_attn.bias" should not be skipped. continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] # The HF's GPT-2 implementation uses Conv1D instead of Linear. # Because of this, we need to transpose the weights. # Note(zhuohan): the logic below might break quantized models. for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]: if conv1d_weight_name not in name: continue if not name.endswith(".weight"): continue loaded_weight = loaded_weight.t() weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class GPT2LMHeadModel(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.transformer = GPT2Model( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "transformer") ) self.lm_head = ParallelLMHead( self.config.vocab_size, self.config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.lm_head", ) if self.config.tie_word_embeddings: self.lm_head = self.lm_head.tie_weights(self.transformer.wte) self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.transformer.make_empty_intermediate_tensors ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.transformer.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.transformer( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) weights = _add_transformer_prefix(weights) return loader.load_weights(weights) class GPT2ForSequenceClassification(nn.Module, SupportsCrossEncoding): """GPT2 Model for sequence classification. This class expands GPT2Model with pooling and score functions - last token is being used for classification. Attributes: transformer: An instance of GPT2Model used for forward operations. score: A layer for calculating logits. _pooler: An instance of Pooler used for pooling operations. """ is_pooling_model = True def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config self.transformer = GPT2Model( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "gpt2") ) self.score = nn.Linear( config.n_embd, config.num_labels, bias=False, dtype=vllm_config.model_config.head_dtype, ) pooler_config = vllm_config.model_config.pooler_config assert pooler_config is not None self.pooler = DispatchPooler( { "token_classify": Pooler.for_token_classify( pooler_config, classifier=self.score ), "classify": Pooler.for_classify( pooler_config, classifier=self.score, act_fn="classify" ), "score": Pooler.for_classify( pooler_config, classifier=self.score, act_fn="score" ), } ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.transformer.get_input_embeddings(input_ids) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): loader = AutoWeightsLoader(self) return loader.load_weights(weights) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor: hidden_states = self.transformer( input_ids=input_ids, position_ids=positions, inputs_embeds=inputs_embeds, intermediate_tensors=intermediate_tensors, ) return hidden_states def _add_transformer_prefix( weights: Iterable[tuple[str, torch.Tensor]], ) -> Iterable[tuple[str, torch.Tensor]]: for name, tensor in weights: if not name.startswith("transformer.") and not name.startswith("lm_head"): name = "transformer." + name yield name, tensor