# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import json from argparse import ArgumentError from contextlib import nullcontext from dataclasses import dataclass, field from typing import Annotated, Literal import pytest from vllm.config import AttentionConfig, CompilationConfig, config from vllm.engine.arg_utils import ( EngineArgs, contains_type, get_kwargs, get_type, get_type_hints, is_not_builtin, is_type, literal_to_kwargs, optional_type, parse_type, ) from vllm.utils.argparse_utils import FlexibleArgumentParser @pytest.mark.parametrize( ("type", "value", "expected"), [ (int, "42", 42), (float, "3.14", 3.14), (str, "Hello World!", "Hello World!"), (json.loads, '{"foo":1,"bar":2}', {"foo": 1, "bar": 2}), ], ) def test_parse_type(type, value, expected): parse_type_func = parse_type(type) assert parse_type_func(value) == expected def test_optional_type(): optional_type_func = optional_type(int) assert optional_type_func("None") is None assert optional_type_func("42") == 42 @pytest.mark.parametrize( ("type_hint", "type", "expected"), [ (int, int, True), (int, float, False), (list[int], list, True), (list[int], tuple, False), (Literal[0, 1], Literal, True), ], ) def test_is_type(type_hint, type, expected): assert is_type(type_hint, type) == expected @pytest.mark.parametrize( ("type_hints", "type", "expected"), [ ({float, int}, int, True), ({int, tuple}, int, True), ({int, tuple[int]}, int, True), ({int, tuple[int, ...]}, int, True), ({int, tuple[int]}, float, False), ({int, tuple[int, ...]}, float, False), ({str, Literal["x", "y"]}, Literal, True), ], ) def test_contains_type(type_hints, type, expected): assert contains_type(type_hints, type) == expected @pytest.mark.parametrize( ("type_hints", "type", "expected"), [ ({int, float}, int, int), ({int, float}, str, None), ({str, Literal["x", "y"]}, Literal, Literal["x", "y"]), ], ) def test_get_type(type_hints, type, expected): assert get_type(type_hints, type) == expected @pytest.mark.parametrize( ("type_hints", "expected"), [ ({Literal[1, 2]}, {"type": int, "choices": [1, 2]}), ({str, Literal["x", "y"]}, {"type": str, "metavar": ["x", "y"]}), ({Literal[1, "a"]}, Exception), ], ) def test_literal_to_kwargs(type_hints, expected): context = nullcontext() if expected is Exception: context = pytest.raises(expected) with context: assert literal_to_kwargs(type_hints) == expected @config @dataclass class NestedConfig: field: int = 1 """field""" @config @dataclass class DummyConfig: regular_bool: bool = True """Regular bool with default True""" optional_bool: bool | None = None """Optional bool with default None""" optional_literal: Literal["x", "y"] | None = None """Optional literal with default None""" tuple_n: tuple[int, ...] = field(default_factory=lambda: (1, 2, 3)) """Tuple with variable length""" tuple_2: tuple[int, int] = field(default_factory=lambda: (1, 2)) """Tuple with fixed length""" list_n: list[int] = field(default_factory=lambda: [1, 2, 3]) """List with variable length""" list_literal: list[Literal[1, 2]] = field(default_factory=list) """List with literal choices""" list_union: list[str | type[object]] = field(default_factory=list) """List with union type""" set_n: set[int] = field(default_factory=lambda: {1, 2, 3}) """Set with variable length""" literal_literal: Literal[Literal[1], Literal[2]] = 1 """Literal of literals with default 1""" json_tip: dict = field(default_factory=dict) """Dict which will be JSON in CLI""" nested_config: NestedConfig = field(default_factory=NestedConfig) """Nested config""" @pytest.mark.parametrize( ("type_hint", "expected"), [ (int, False), (DummyConfig, True), ], ) def test_is_not_builtin(type_hint, expected): assert is_not_builtin(type_hint) == expected @pytest.mark.parametrize( ("type_hint", "expected"), [ (Annotated[int, "annotation"], {int}), (int | None, {int, type(None)}), (Annotated[int | None, "annotation"], {int, type(None)}), (Annotated[int, "annotation"] | None, {int, type(None)}), ], ids=["Annotated", "or_None", "Annotated_or_None", "or_None_Annotated"], ) def test_get_type_hints(type_hint, expected): assert get_type_hints(type_hint) == expected def test_get_kwargs(): kwargs = get_kwargs(DummyConfig) print(kwargs) # bools should not have their type set assert kwargs["regular_bool"].get("type") is None assert kwargs["optional_bool"].get("type") is None # optional literals should have None as a choice assert kwargs["optional_literal"]["choices"] == ["x", "y", "None"] # tuples should have the correct nargs assert kwargs["tuple_n"]["nargs"] == "+" assert kwargs["tuple_2"]["nargs"] == 2 # lists should work assert kwargs["list_n"]["type"] is int assert kwargs["list_n"]["nargs"] == "+" # lists with literals should have the correct choices assert kwargs["list_literal"]["type"] is int assert kwargs["list_literal"]["nargs"] == "+" assert kwargs["list_literal"]["choices"] == [1, 2] # lists with unions should become str type. # If not, we cannot know which type to use for parsing assert kwargs["list_union"]["type"] is str # sets should work like lists assert kwargs["set_n"]["type"] is int assert kwargs["set_n"]["nargs"] == "+" # literals of literals should have merged choices assert kwargs["literal_literal"]["choices"] == [1, 2] # dict should have json tip in help json_tip = "Should either be a valid JSON string or JSON keys" assert json_tip in kwargs["json_tip"]["help"] # nested config should construct the nested config assert kwargs["nested_config"]["type"]('{"field": 2}') == NestedConfig(2) @pytest.mark.parametrize( ("arg", "expected"), [ (None, dict()), ('{"video": {"num_frames": 123} }', {"video": {"num_frames": 123}}), ( '{"video": {"num_frames": 123, "fps": 1.0, "foo": "bar"}, "image": {"foo": "bar"} }', # noqa { "video": {"num_frames": 123, "fps": 1.0, "foo": "bar"}, "image": {"foo": "bar"}, }, ), ], ) def test_media_io_kwargs_parser(arg, expected): parser = EngineArgs.add_cli_args(FlexibleArgumentParser()) if arg is None: args = parser.parse_args([]) else: args = parser.parse_args(["--media-io-kwargs", arg]) assert args.media_io_kwargs == expected @pytest.mark.parametrize( ("args", "expected"), [ (["-O", "1"], "1"), (["-O", "2"], "2"), (["-O", "3"], "3"), (["-O0"], "0"), (["-O1"], "1"), (["-O2"], "2"), (["-O3"], "3"), ], ) def test_optimization_level(args, expected): """ Test space-separated optimization levels (-O 1, -O 2, -O 3) map to optimization_level. """ parser = EngineArgs.add_cli_args(FlexibleArgumentParser()) parsed_args = parser.parse_args(args) assert parsed_args.optimization_level == expected assert parsed_args.compilation_config.mode is None @pytest.mark.parametrize( ("args", "expected"), [ (["-cc.mode=0"], 0), (["-cc.mode=1"], 1), (["-cc.mode=2"], 2), (["-cc.mode=3"], 3), ], ) def test_mode_parser(args, expected): """ Test compilation config modes (-cc.mode=int) map to compilation_config. """ parser = EngineArgs.add_cli_args(FlexibleArgumentParser()) parsed_args = parser.parse_args(args) assert parsed_args.compilation_config.mode == expected def test_compilation_config(): parser = EngineArgs.add_cli_args(FlexibleArgumentParser()) # default value args = parser.parse_args([]) assert args.compilation_config == CompilationConfig() # set to string form of a dict args = parser.parse_args( [ "-cc", '{"mode": 3, "cudagraph_capture_sizes": [1, 2, 4, 8], "backend": "eager"}', ] ) assert ( args.compilation_config.mode == 3 and args.compilation_config.cudagraph_capture_sizes == [1, 2, 4, 8] and args.compilation_config.backend == "eager" ) # set to string form of a dict args = parser.parse_args( [ "--compilation-config=" '{"mode": 3, "cudagraph_capture_sizes": [1, 2, 4, 8], ' '"backend": "inductor"}', ] ) assert ( args.compilation_config.mode == 3 and args.compilation_config.cudagraph_capture_sizes == [1, 2, 4, 8] and args.compilation_config.backend == "inductor" ) def test_attention_config(): from vllm.attention.backends.registry import AttentionBackendEnum parser = EngineArgs.add_cli_args(FlexibleArgumentParser()) # default value args = parser.parse_args([]) assert args is not None engine_args = EngineArgs.from_cli_args(args) assert engine_args.attention_config == AttentionConfig() # set backend via dot notation args = parser.parse_args(["--attention-config.backend", "FLASH_ATTN"]) assert args is not None engine_args = EngineArgs.from_cli_args(args) assert engine_args.attention_config.backend is not None assert engine_args.attention_config.backend.name == "FLASH_ATTN" # set backend via --attention-backend shorthand args = parser.parse_args(["--attention-backend", "FLASHINFER"]) assert args is not None engine_args = EngineArgs.from_cli_args(args) assert engine_args.attention_backend is not None assert engine_args.attention_backend == "FLASHINFER" # set all fields via dot notation args = parser.parse_args( [ "--attention-config.backend", "FLASH_ATTN", "--attention-config.flash_attn_version", "3", "--attention-config.use_prefill_decode_attention", "true", "--attention-config.flash_attn_max_num_splits_for_cuda_graph", "16", "--attention-config.use_cudnn_prefill", "true", "--attention-config.use_trtllm_ragged_deepseek_prefill", "true", "--attention-config.use_trtllm_attention", "true", "--attention-config.disable_flashinfer_prefill", "true", "--attention-config.disable_flashinfer_q_quantization", "true", ] ) assert args is not None engine_args = EngineArgs.from_cli_args(args) assert engine_args.attention_config.backend is not None assert engine_args.attention_config.backend.name == "FLASH_ATTN" assert engine_args.attention_config.flash_attn_version == 3 assert engine_args.attention_config.use_prefill_decode_attention is True assert engine_args.attention_config.flash_attn_max_num_splits_for_cuda_graph == 16 assert engine_args.attention_config.use_cudnn_prefill is True assert engine_args.attention_config.use_trtllm_ragged_deepseek_prefill is True assert engine_args.attention_config.use_trtllm_attention is True assert engine_args.attention_config.disable_flashinfer_prefill is True assert engine_args.attention_config.disable_flashinfer_q_quantization is True # set to string form of a dict with all fields args = parser.parse_args( [ "--attention-config=" '{"backend": "FLASHINFER", "flash_attn_version": 2, ' '"use_prefill_decode_attention": false, ' '"flash_attn_max_num_splits_for_cuda_graph": 8, ' '"use_cudnn_prefill": false, ' '"use_trtllm_ragged_deepseek_prefill": false, ' '"use_trtllm_attention": false, ' '"disable_flashinfer_prefill": false, ' '"disable_flashinfer_q_quantization": false}', ] ) assert args is not None engine_args = EngineArgs.from_cli_args(args) assert engine_args.attention_config.backend is not None assert engine_args.attention_config.backend.name == "FLASHINFER" assert engine_args.attention_config.flash_attn_version == 2 assert engine_args.attention_config.use_prefill_decode_attention is False assert engine_args.attention_config.flash_attn_max_num_splits_for_cuda_graph == 8 assert engine_args.attention_config.use_cudnn_prefill is False assert engine_args.attention_config.use_trtllm_ragged_deepseek_prefill is False assert engine_args.attention_config.use_trtllm_attention is False assert engine_args.attention_config.disable_flashinfer_prefill is False assert engine_args.attention_config.disable_flashinfer_q_quantization is False # test --attention-backend flows into VllmConfig.attention_config args = parser.parse_args( [ "--model", "facebook/opt-125m", "--attention-backend", "FLASH_ATTN", ] ) assert args is not None engine_args = EngineArgs.from_cli_args(args) vllm_config = engine_args.create_engine_config() assert vllm_config.attention_config.backend == AttentionBackendEnum.FLASH_ATTN # test --attention-config.backend flows into VllmConfig.attention_config args = parser.parse_args( [ "--model", "facebook/opt-125m", "--attention-config.backend", "FLASHINFER", ] ) assert args is not None engine_args = EngineArgs.from_cli_args(args) vllm_config = engine_args.create_engine_config() assert vllm_config.attention_config.backend == AttentionBackendEnum.FLASHINFER # test --attention-backend and --attention-config.backend are mutually exclusive args = parser.parse_args( [ "--model", "facebook/opt-125m", "--attention-backend", "FLASH_ATTN", "--attention-config.backend", "FLASHINFER", ] ) assert args is not None engine_args = EngineArgs.from_cli_args(args) with pytest.raises(ValueError, match="mutually exclusive"): engine_args.create_engine_config() def test_prefix_cache_default(): parser = EngineArgs.add_cli_args(FlexibleArgumentParser()) args = parser.parse_args([]) # should be None by default (depends on model). engine_args = EngineArgs.from_cli_args(args=args) assert engine_args.enable_prefix_caching is None # with flag to turn it on. args = parser.parse_args(["--enable-prefix-caching"]) engine_args = EngineArgs.from_cli_args(args=args) assert engine_args.enable_prefix_caching # with disable flag to turn it off. args = parser.parse_args(["--no-enable-prefix-caching"]) engine_args = EngineArgs.from_cli_args(args=args) assert not engine_args.enable_prefix_caching @pytest.mark.parametrize( ("arg", "expected", "option"), [ (None, None, "mm-processor-kwargs"), ("{}", {}, "mm-processor-kwargs"), ('{"num_crops": 4}', {"num_crops": 4}, "mm-processor-kwargs"), ('{"foo": {"bar": "baz"}}', {"foo": {"bar": "baz"}}, "mm-processor-kwargs"), ], ) def test_composite_arg_parser(arg, expected, option): parser = EngineArgs.add_cli_args(FlexibleArgumentParser()) if arg is None: args = parser.parse_args([]) else: args = parser.parse_args([f"--{option}", arg]) assert getattr(args, option.replace("-", "_")) == expected def test_human_readable_model_len(): # `exit_on_error` disabled to test invalid values below parser = EngineArgs.add_cli_args(FlexibleArgumentParser(exit_on_error=False)) args = parser.parse_args([]) assert args.max_model_len is None args = parser.parse_args(["--max-model-len", "1024"]) assert args.max_model_len == 1024 # Lower args = parser.parse_args(["--max-model-len", "1m"]) assert args.max_model_len == 1_000_000 args = parser.parse_args(["--max-model-len", "10k"]) assert args.max_model_len == 10_000 args = parser.parse_args(["--max-model-len", "2g"]) assert args.max_model_len == 2_000_000_000 args = parser.parse_args(["--max-model-len", "2t"]) assert args.max_model_len == 2_000_000_000_000 # Capital args = parser.parse_args(["--max-model-len", "3K"]) assert args.max_model_len == 2**10 * 3 args = parser.parse_args(["--max-model-len", "10M"]) assert args.max_model_len == 2**20 * 10 args = parser.parse_args(["--max-model-len", "4G"]) assert args.max_model_len == 2**30 * 4 args = parser.parse_args(["--max-model-len", "4T"]) assert args.max_model_len == 2**40 * 4 # Decimal values args = parser.parse_args(["--max-model-len", "10.2k"]) assert args.max_model_len == 10200 # ..truncated to the nearest int args = parser.parse_args(["--max-model-len", "10.2123451234567k"]) assert args.max_model_len == 10212 args = parser.parse_args(["--max-model-len", "10.2123451234567m"]) assert args.max_model_len == 10212345 args = parser.parse_args(["--max-model-len", "10.2123451234567g"]) assert args.max_model_len == 10212345123 args = parser.parse_args(["--max-model-len", "10.2123451234567t"]) assert args.max_model_len == 10212345123456 # Invalid (do not allow decimals with binary multipliers) for invalid in ["1a", "pwd", "10.24", "1.23M", "1.22T"]: with pytest.raises(ArgumentError): parser.parse_args(["--max-model-len", invalid])