# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import torch from vllm.attention.backends.registry import AttentionBackendEnum from vllm.attention.selector import _cached_get_attn_backend, get_attn_backend from vllm.config import AttentionConfig, VllmConfig, set_current_vllm_config from vllm.platforms.rocm import RocmPlatform @pytest.fixture(autouse=True) def clear_cache(): """Clear lru cache to ensure each test case runs without caching.""" _cached_get_attn_backend.cache_clear() @pytest.mark.skip(reason="Skipped for now. Should be revisited.") def test_selector(monkeypatch: pytest.MonkeyPatch): # Set the current platform to ROCm using monkeypatch monkeypatch.setattr("vllm.attention.selector.current_platform", RocmPlatform()) # Test standard ROCm attention attention_config = AttentionConfig(backend=AttentionBackendEnum.ROCM_ATTN) vllm_config = VllmConfig(attention_config=attention_config) with set_current_vllm_config(vllm_config): backend = get_attn_backend(16, torch.float16, torch.float16, 16, False) assert backend.get_name() == "ROCM_FLASH" or backend.get_name() == "TRITON_ATTN" # MLA test for deepseek related # Change the attention backend to triton MLA attention_config = AttentionConfig(backend=AttentionBackendEnum.TRITON_MLA) vllm_config = VllmConfig(attention_config=attention_config) with set_current_vllm_config(vllm_config): backend = get_attn_backend(576, torch.bfloat16, "auto", 16, False, use_mla=True) assert backend.get_name() == "TRITON_MLA" # If attention backend is None # If use_mla is true # The selected backend is triton MLA attention_config = AttentionConfig(backend=None) vllm_config = VllmConfig(attention_config=attention_config) with set_current_vllm_config(vllm_config): backend = get_attn_backend(576, torch.bfloat16, "auto", 16, False, use_mla=True) assert backend.get_name() == "TRITON_MLA" # Change the attention backend to AITER MLA attention_config = AttentionConfig(backend=AttentionBackendEnum.ROCM_AITER_MLA) vllm_config = VllmConfig(attention_config=attention_config) with set_current_vllm_config(vllm_config): backend = get_attn_backend(576, torch.bfloat16, "auto", 1, False, use_mla=True) assert backend.get_name() == "ROCM_AITER_MLA" # If attention backend is None # If use_mla is true # If VLLM_ROCM_USE_AITER is enabled # The selected backend is ROCM_AITER_MLA with monkeypatch.context() as m: m.setenv("VLLM_ROCM_USE_AITER", "1") attention_config = AttentionConfig(backend=None) vllm_config = VllmConfig(attention_config=attention_config) with set_current_vllm_config(vllm_config): backend = get_attn_backend( 576, torch.bfloat16, "auto", 1, False, use_mla=True ) assert backend.get_name() == "ROCM_AITER_MLA"