# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Copyright 2025 The MiniMax AI team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only MiniMaxM2 model.""" from collections.abc import Iterable from typing import Any import torch from torch import nn from transformers import PretrainedConfig from vllm.attention.layer import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, ModelConfig, VllmConfig from vllm.distributed import ( get_pp_group, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce, ) from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( QKVParallelLinear, ReplicatedLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.mamba.linear_attn import MiniMaxText01RMSNormTP from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name, ) from vllm.sequence import IntermediateTensors from .interfaces import SupportsPP from .utils import ( AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class MiniMaxM2MoE(nn.Module): def __init__( self, config: PretrainedConfig, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.tp_size = get_tensor_model_parallel_world_size() if self.tp_size > config.num_local_experts: raise ValueError( f"Tensor parallel size {self.tp_size} is greater than " f"the number of experts {config.num_local_experts}." ) self.use_routing_bias = getattr(config, "use_routing_bias", False) if self.use_routing_bias: self.e_score_correction_bias = nn.Parameter( torch.empty(config.num_local_experts, dtype=torch.float32) ) self.e_score_correction_bias.weight_loader = ( MiniMaxM2MoE.ebias_weight_loader ) else: self.e_score_correction_bias = None self.experts = FusedMoE( num_experts=config.num_local_experts, top_k=config.num_experts_per_tok, scoring_func=config.scoring_func, use_grouped_topk=True, num_expert_group=1, topk_group=1, e_score_correction_bias=self.e_score_correction_bias, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, reduce_results=False, renormalize=True, quant_config=quant_config, prefix=f"{prefix}.experts", ) self.gate = ReplicatedLinear( config.hidden_size, config.num_local_experts, bias=False, params_dtype=torch.float32, quant_config=None, prefix=f"{prefix}.gate", ) @staticmethod def ebias_weight_loader(param: nn.Parameter, loaded_weight: torch.Tensor) -> None: assert param.size() == loaded_weight.size() param.data.copy_(loaded_weight.to(torch.float32)) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states.to(torch.float32)) final_hidden_states = self.experts( hidden_states=hidden_states, router_logits=router_logits ) final_hidden_states = final_hidden_states if self.tp_size > 1: final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states) return final_hidden_states.view(num_tokens, hidden_dim) class MiniMaxM2Attention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, rotary_dim: int, rope_parameters: dict[str, Any] | None = None, attn_window_size: int | None = None, max_position_embeddings: int = 8192, head_dim: int | None = None, rms_norm_eps: float = 1e-06, qkv_bias: bool = False, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = head_dim or (hidden_size // self.total_num_heads) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=qkv_bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=rotary_dim, max_position=max_position_embeddings, rope_parameters=rope_parameters, ) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, per_layer_sliding_window=attn_window_size, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) self.q_norm = MiniMaxText01RMSNormTP( self.head_dim * self.total_num_heads, eps=rms_norm_eps ) self.k_norm = MiniMaxText01RMSNormTP( self.head_dim * self.total_num_kv_heads, eps=rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q = self.q_norm(q) k = self.k_norm(k) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.o_proj(attn_output) return output class MiniMaxM2DecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, prefix: str, model_config: ModelConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size max_position_embeddings = getattr(config, "max_position_embeddings", 8192) if hasattr(config, "max_model_len") and isinstance(config.max_model_len, int): max_position_embeddings = max( config.max_position_embeddings, config.max_model_len ) # DecoderLayers are created with `make_layers` which passes the prefix # with the layer's index. layer_idx = int(prefix.split(sep=".")[-1]) self.layer_idx = layer_idx self.self_attn = MiniMaxM2Attention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, rotary_dim=config.rotary_dim, rope_parameters=config.rope_parameters, max_position_embeddings=max_position_embeddings, rms_norm_eps=config.rms_norm_eps, qkv_bias=getattr(config, "attention_bias", False), head_dim=getattr(config, "head_dim", None), cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) self.block_sparse_moe = MiniMaxM2MoE( config=config, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.block_sparse_moe(hidden_states) return hidden_states, residual @support_torch_compile class MiniMaxM2Model(nn.Module): fall_back_to_pt_during_load = False def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config model_config = vllm_config.model_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.vocab_size = config.vocab_size if get_pp_group().is_first_rank: self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=None, prefix=f"{prefix}.embed_tokens", ) else: self.embed_tokens = PPMissingLayer() self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: MiniMaxM2DecoderLayer( config, prefix, model_config=model_config, cache_config=cache_config, quant_config=quant_config, ), prefix=f"{prefix}.layers", ) if get_pp_group().is_last_rank: self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in self.layers[self.start_layer : self.end_layer]: hidden_states, residual = layer(positions, hidden_states, residual) if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: return FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="w1", ckpt_down_proj_name="w2", ckpt_up_proj_name="w3", num_experts=self.config.num_local_experts, ) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] # Params for weights, fp8 weight scales, fp8 activation scales # (param_name, weight_name, expert_id, shard_id) expert_params_mapping = self.get_expert_mapping() params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue spec_layer = get_spec_layer_idx_from_weight_name(self.config, name) if spec_layer is not None: continue # skip spec decode layers for main model for param_name, weight_name, shard_id in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if ("mlp.experts." in name) and name not in params_dict: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader( param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id, ) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class MiniMaxM2ForCausalLM(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config if hasattr(vllm_config.model_config, "max_model_len"): self.config.max_model_len = vllm_config.model_config.max_model_len self.model = MiniMaxM2Model( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) if get_pp_group().is_last_rank: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=None ) else: self.lm_head = PPMissingLayer() self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, **kwargs, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights) def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: return self.model.get_expert_mapping() def get_spec_layer_idx_from_weight_name( config: PretrainedConfig, weight_name: str ) -> int | None: if hasattr(config, "num_mtp_modules") and (config.num_mtp_modules > 0): layer_idx = config.num_hidden_layers for i in range(config.num_mtp_modules): if weight_name.startswith(f"model.layers.{layer_idx + i}."): return layer_idx + i return None