# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import weakref from collections.abc import Callable, Sequence from copy import deepcopy from torch import fx from torch._ops import OpOverload from vllm.compilation.fx_utils import find_op_nodes from vllm.compilation.inductor_pass import InductorPass from vllm.compilation.pass_manager import with_pattern_match_debug from vllm.compilation.vllm_inductor_pass import VllmInductorPass from vllm.config import VllmConfig, get_current_vllm_config class LazyInitPass(InductorPass): """ If there's a pass that we want to initialize lazily in a test, we can wrap it in LazyInitPass, which will initialize the pass when invoked and then immediately invoke it. """ def __init__(self, pass_cls: type[VllmInductorPass], vllm_config: VllmConfig): self.pass_cls = pass_cls self.vllm_config = weakref.proxy(vllm_config) # avoid cycle def __call__(self, graph: fx.Graph) -> None: self.pass_ = self.pass_cls(self.vllm_config) self.pass_(graph) class TestBackend: """ This class provides a simple Inductor backend that can be used for testing. It takes a list of custom passes and runs them after Inductor's passes. It also saves the graph before and after the custom passes for inspection. Inductor config can be modified directly by editing the inductor_config property. This can be helpful for adding passes like the 'pre_grad_custom_pass' and the 'post_grad_custom_pre_pass'. Inductor config is default-initialized from VllmConfig.CompilationConfig. """ def __init__(self, *passes: InductorPass | Callable[[fx.Graph], None]): self.custom_passes = list(passes) compile_config = get_current_vllm_config().compilation_config self.inductor_config = compile_config.inductor_compile_config self.inductor_config["force_disable_caches"] = True self.inductor_config["post_grad_custom_post_pass"] = self.post_pass def __call__(self, graph: fx.GraphModule, example_inputs): self.graph_pre_compile = deepcopy(graph) from torch._inductor.compile_fx import compile_fx return compile_fx(graph, example_inputs, config_patches=self.inductor_config) @with_pattern_match_debug def post_pass(self, graph: fx.Graph): self.graph_pre_pass = deepcopy(graph) VllmInductorPass.dump_prefix = 0 for pass_ in self.custom_passes: pass_(graph) VllmInductorPass.dump_prefix += 1 VllmInductorPass.dump_prefix = None self.graph_post_pass = deepcopy(graph) # assign by reference, will reflect the final state of the graph self.final_graph = graph def check_before_ops(self, ops: Sequence[OpOverload], fully_replaced=True): for op in ops: num_pre = len(list(find_op_nodes(op, self.graph_pre_pass))) num_post = len(list(find_op_nodes(op, self.graph_post_pass))) assert num_pre > 0, f"Op {op.name()} not found in pre-pass graph" assert num_pre > num_post, f"All nodes remain for op {op.name()}" if fully_replaced: assert num_post == 0, f"Unexpected op {op.name()} in post-pass graph" def check_after_ops(self, ops: Sequence[OpOverload]): for op in ops: num_pre = len(list(find_op_nodes(op, self.graph_pre_pass))) num_post = len(list(find_op_nodes(op, self.graph_post_pass))) assert num_pre == 0, f"Unexpected op {op.name()} in pre-pass graph" assert num_post > 0, f"Op {op.name()} not found in post-pass graph" def op_count(self, op: OpOverload, before=False) -> int: graph = self.graph_pre_pass if before else self.graph_post_pass return len(list(find_op_nodes(op, graph)))