# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # adapted from # https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek-OCR-master/DeepSeek-OCR-vllm/deepencoder/sam_vary_sdpa.py # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from collections.abc import Iterable from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from transformers import CLIPVisionConfig from vllm.attention.layers.mm_encoder_attention import MMEncoderAttention from vllm.model_executor.layers.conv import Conv2dLayer from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.model_loader.weight_utils import default_weight_loader from .clip import CLIPEncoder, CLIPVisionEmbeddings class MLPBlock(nn.Module): def __init__( self, embedding_dim: int, mlp_dim: int, act: type[nn.Module] = nn.GELU, ) -> None: super().__init__() self.lin1 = nn.Linear(embedding_dim, mlp_dim) self.lin2 = nn.Linear(mlp_dim, embedding_dim) self.act = act() def forward(self, x: torch.Tensor) -> torch.Tensor: return self.lin2(self.act(self.lin1(x))) # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa class ImageEncoderViT(nn.Module): def __init__( self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, out_chans: int = 256, qkv_bias: bool = True, norm_layer: type[nn.Module] = nn.LayerNorm, act_layer: type[nn.Module] = nn.GELU, use_abs_pos: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, global_attn_indexes: tuple[int, ...] = (), ) -> None: """ Args: img_size (int): Input image size. patch_size (int): Patch size. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. depth (int): Depth of ViT. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_abs_pos (bool): If True, use absolute positional embeddings. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. global_attn_indexes (list): Indexes for blocks using global attention. """ # noqa: E501 super().__init__() self.img_size = img_size self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, ) self.pos_embed: nn.Parameter | None = None if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = nn.Parameter( torch.zeros( 1, img_size // patch_size, img_size // patch_size, embed_dim ) ) self.blocks = nn.ModuleList() for i in range(depth): block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, act_layer=act_layer, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size if i not in global_attn_indexes else 0, input_size=(img_size // patch_size, img_size // patch_size), ) self.blocks.append(block) self.neck = nn.Sequential( Conv2dLayer( embed_dim, out_chans, kernel_size=1, bias=False, ), LayerNorm2d(out_chans), Conv2dLayer( out_chans, out_chans, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(out_chans), ) self.net_2 = Conv2dLayer( 256, 512, kernel_size=3, stride=2, padding=1, bias=False ) self.net_3 = Conv2dLayer( 512, 1024, kernel_size=3, stride=2, padding=1, bias=False ) def get_abs_pos(self, abs_pos: torch.Tensor, tgt_size: int): dtype = abs_pos.dtype src_size = abs_pos.size(1) if src_size != tgt_size: old_pos_embed = abs_pos.permute(0, 3, 1, 2) old_pos_embed = old_pos_embed.to(torch.float32) new_pos_embed = F.interpolate( old_pos_embed, size=(tgt_size, tgt_size), mode="bicubic", antialias=True, align_corners=False, ).to(dtype) new_pos_embed = new_pos_embed.permute(0, 2, 3, 1) return new_pos_embed else: return abs_pos def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.get_abs_pos(self.pos_embed, x.size(1)) for blk in self.blocks: x = blk(x) neck_output = self.neck(x.permute(0, 3, 1, 2)) conv2_output = self.net_2(neck_output) conv3_output = self.net_3(conv2_output) return conv3_output class Block(nn.Module): """Transformer blocks with support of window attention and residual propagation blocks""" def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = True, norm_layer: type[nn.Module] = nn.LayerNorm, act_layer: type[nn.Module] = nn.GELU, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, input_size: tuple[int, int] | None = None, ) -> None: """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. If it equals 0, then use global attention. input_size (tuple(int, int) or None): Input resolution for calculating the relative positional parameter size. """ # noqa: E501 super().__init__() self.norm1 = norm_layer(dim) self.attn = RelPosAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, input_size=input_size if window_size == 0 else (window_size, window_size), ) self.norm2 = norm_layer(dim) self.mlp = MLPBlock( embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer ) self.window_size = window_size def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) # Window partition if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size) x = self.attn(x) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W)) x = shortcut + x x = x + self.mlp(self.norm2(x)) return x class RelPosAttention(nn.Module): """Multi-head Attention block with relative position embeddings.""" def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, input_size: tuple[int, int] | None = None, ) -> None: """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. qkv_bias (bool): If True, add a learnable bias to query, key, value. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. input_size (tuple(int, int) or None): Input resolution for calculating the relative positional parameter size. """ # noqa: E501 super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.use_rel_pos = use_rel_pos if self.use_rel_pos: assert input_size is not None, ( "Input size must be provided if using relative positional encoding." ) # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, _ = x.shape # qkv with shape (3, B, nHead, H * W, C) qkv = ( self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) ) # q, k, v with shape (B * nHead, H * W, C) q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) rel_h, rel_w = None, None if self.use_rel_pos: rel_h, rel_w = add_decomposed_rel_pos( q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W) ) q = q.view(B, self.num_heads, H * W, -1) k = k.view(B, self.num_heads, H * W, -1) v = v.view(B, self.num_heads, H * W, -1) if self.use_rel_pos: rel_h = rel_h.view( B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3) ) rel_w = rel_w.view( B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3) ) attn_bias = (rel_h + rel_w).view( B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4) ) x = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_bias ) else: x = torch.nn.functional.scaled_dot_product_attention(q, k, v) x = ( x.view(B, self.num_heads, H, W, -1) .permute(0, 2, 3, 1, 4) .reshape(B, H, W, -1) ) x = self.proj(x) return x def window_partition( x: torch.Tensor, window_size: int ) -> tuple[torch.Tensor, tuple[int, int]]: """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ # noqa: E501 B, H, W, C = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = ( x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) ) return windows, (Hp, Wp) def window_unpartition( windows: torch.Tensor, window_size: int, pad_hw: tuple[int, int], hw: tuple[int, int], ) -> torch.Tensor: """ Window unpartition into original sequences and removing padding. Args: windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ # noqa: E501 Hp, Wp = pad_hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view( B, Hp // window_size, Wp // window_size, window_size, window_size, -1 ) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of query q. k_size (int): size of key k. rel_pos (Tensor): relative position embeddings (L, C). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. dtype = rel_pos.dtype rel_pos = rel_pos.to(torch.float32) rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ).to(dtype) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max( k_size / q_size, 1.0 ) k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max( q_size / k_size, 1.0 ) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] def add_decomposed_rel_pos( q: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: tuple[int, int], k_size: tuple[int, int], ) -> torch.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py Args: q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. q_size (Tuple): spatial sequence size of query q with (q_h, q_w). k_size (Tuple): spatial sequence size of key k with (k_h, k_w). Returns: attn (Tensor): attention map with added relative positional embeddings. """ # noqa: E501 q_h, q_w = q_size k_h, k_w = k_size Rh = get_rel_pos(q_h, k_h, rel_pos_h) Rw = get_rel_pos(q_w, k_w, rel_pos_w) B, _, dim = q.shape r_q = q.reshape(B, q_h, q_w, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) rel_h = rel_h.unsqueeze(-1) rel_w = rel_w.unsqueeze(-2) rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1) rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w) return rel_h, rel_w class PatchEmbed(nn.Module): """ Image to Patch Embedding. """ def __init__( self, kernel_size: tuple[int, int] = (16, 16), stride: tuple[int, int] = (16, 16), padding: tuple[int, int] = (0, 0), in_chans: int = 3, embed_dim: int = 768, ) -> None: """ Args: kernel_size (Tuple): kernel size of the projection layer. stride (Tuple): stride of the projection layer. padding (Tuple): padding size of the projection layer. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. """ super().__init__() self.proj = Conv2dLayer( in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) # B C H W -> B H W C x = x.permute(0, 2, 3, 1) return x # TODO(Isotr0py): use vision_config to build sam model def build_sam_vit_b(): return _build_sam( encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], ) def _build_sam( encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, ): prompt_embed_dim = 256 image_size = 1024 vit_patch_size = 16 image_encoder = ImageEncoderViT( depth=encoder_depth, embed_dim=encoder_embed_dim, img_size=image_size, mlp_ratio=4, norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), num_heads=encoder_num_heads, patch_size=vit_patch_size, qkv_bias=True, use_rel_pos=True, global_attn_indexes=encoder_global_attn_indexes, window_size=14, out_chans=prompt_embed_dim, ) return image_encoder class DeepCLIPVisionEmbeddings(CLIPVisionEmbeddings): def get_abs_pos(self, abs_pos: torch.Tensor, tgt_size: int): # abs_pos: L, C # tgt_size: M # return: M, C dim = abs_pos.size(-1) abs_pos_new = abs_pos.squeeze(0) cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:] src_size = int(math.sqrt(abs_pos_new.shape[0] - 1)) tgt_size = int(math.sqrt(tgt_size)) dtype = abs_pos.dtype if src_size != tgt_size: old_pos_embed = ( old_pos_embed.view(1, src_size, src_size, dim) .permute(0, 3, 1, 2) .contiguous() ) old_pos_embed = old_pos_embed.to(torch.float32) new_pos_embed = F.interpolate( old_pos_embed, size=(tgt_size, tgt_size), mode="bicubic", antialias=True, align_corners=False, ).to(dtype) new_pos_embed = new_pos_embed.permute(0, 2, 3, 1) new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim) vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0) vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim) return vision_pos_embed else: return abs_pos def forward( self, pixel_values: torch.Tensor, patch_embeds: torch.Tensor | None = None ) -> torch.Tensor: batch_size = pixel_values.shape[0] if patch_embeds is not None: patch_embeds = patch_embeds else: patch_embeds = self.patch_embedding(pixel_values) patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.get_abs_pos( self.position_embedding(self.position_ids), embeddings.size(1) ) return embeddings class DeepCLIPVisionTransformer(nn.Module): def __init__( self, config: CLIPVisionConfig, quant_config: QuantizationConfig | None = None, *, num_hidden_layers_override: int | None = None, prefix: str = "", ) -> None: super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = DeepCLIPVisionEmbeddings(config) # NOTE: This typo of "layrnorm" is not fixed on purpose to match # the original transformers code and name of the model weights. self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.transformer = CLIPEncoder( config=config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override, prefix=f"{prefix}.encoder", attn_cls=MMEncoderAttention, ) num_hidden_layers = config.num_hidden_layers if len(self.transformer.layers) > config.num_hidden_layers: raise ValueError( f"The original encoder only has {num_hidden_layers} " f"layers, but you requested {len(self.transformer.layers)} layers." ) @property def dtype(self): return next(self.parameters()).dtype @property def device(self): return next(self.parameters()).device def forward( self, pixel_values: torch.Tensor, patch_embeds: torch.Tensor | None = None, *, select_layers: list[int] | None = None, ) -> torch.Tensor: hidden_states = self.embeddings(pixel_values, patch_embeds) hidden_states = self.pre_layrnorm(hidden_states) # Produces either the last layer output or all of the hidden states, # depending on if we have select_layers or not encoder_outputs = self.transformer( inputs_embeds=hidden_states, return_all_hidden_states=select_layers is not None, ) return encoder_outputs def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params