# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import socket import time import msgspec import msgspec.msgpack import pytest import zmq from tqdm import tqdm from vllm import LLM, SamplingParams, TokensPrompt from vllm.config import KVEventsConfig, KVTransferConfig from vllm.distributed.kv_events import BlockStored, KVEventBatch from vllm.platforms import current_platform from vllm.utils.system_utils import set_env_var CPU_BLOCK_SIZES = [48] ATTN_BACKENDS = ["FLASH_ATTN"] if current_platform.is_cuda(): ATTN_BACKENDS.append("FLASHINFER") class MockSubscriber: """Helper class to receive and verify published events""" def __init__( self, endpoint: str, topic: str, ): self.ctx = zmq.Context.instance() self.topic_bytes = topic.encode("utf-8") # Set up subscriber socket self.sub = self.ctx.socket(zmq.SUB) self.sub.setsockopt(zmq.SUBSCRIBE, self.topic_bytes) self.sub.connect(endpoint) self.decoder = msgspec.msgpack.Decoder(type=KVEventBatch) def get_new_cpu_stored_events(self) -> list[BlockStored]: cpu_stored_events: list[BlockStored] = [] poller = zmq.Poller() poller.register(self.sub, zmq.POLLIN) timeout = 1000 # 1 second while True: events = dict(poller.poll(timeout)) if events.get(self.sub) != zmq.POLLIN: return cpu_stored_events topic_bytes, _, payload = self.sub.recv_multipart() assert topic_bytes == self.topic_bytes event_batch = self.decoder.decode(payload) assert isinstance(event_batch, KVEventBatch) for event in event_batch.events: if isinstance(event, BlockStored) and event.medium == "CPU": cpu_stored_events.append(event) timeout = 100 def close(self): """Clean up resources""" self.sub.close() def _latency_test(llm: LLM, subscriber: MockSubscriber): sampling_params = SamplingParams(max_tokens=1) num_times_cpu_better_than_cold = 0 num_tests = 10 total_cold_time = 0.0 total_gpu_hit_time = 0.0 total_cpu_hit_time = 0.0 prompt_token_ids = [0] * 10001 for i in tqdm(range(num_tests), desc="Running tests"): prompt_token_ids[0] = i prompts = [TokensPrompt(prompt_token_ids=prompt_token_ids)] # run generation - this should trigger saving KV cache start_time = time.time() llm.generate(prompts, sampling_params, use_tqdm=False) cold_time = time.time() - start_time total_cold_time += cold_time # run generation again - should hit the GPU prefix cache start_time = time.time() llm.generate(prompts, sampling_params, use_tqdm=False) gpu_hit_time = time.time() - start_time total_gpu_hit_time += gpu_hit_time # reset prefix cache to avoid GPU hit. llm.reset_prefix_cache() assert subscriber.get_new_cpu_stored_events() # run generation again - this should trigger loading from CPU start_time = time.time() llm.generate(prompts, sampling_params, use_tqdm=False) cpu_hit_time = time.time() - start_time total_cpu_hit_time += cpu_hit_time if cpu_hit_time < cold_time: num_times_cpu_better_than_cold += 1 print("Average times:") print(f" Cold: {total_cold_time * 1000 / num_tests:.2f}ms") print(f" GPU hit: {total_gpu_hit_time * 1000 / num_tests:.2f}ms") print(f" CPU hit: {total_cpu_hit_time * 1000 / num_tests:.2f}ms") assert num_times_cpu_better_than_cold >= 0.8 * num_tests def _accuracy_test(llm: LLM, subscriber: MockSubscriber): sampling_params = SamplingParams(max_tokens=1) cpu_block_size = ( llm.llm_engine.vllm_config.kv_transfer_config.kv_connector_extra_config[ "block_size" ] ) subscriber.get_new_cpu_stored_events() # prepend prompt to be cpu block aligned prompt = "Let's count to 10. One, two, three, four," while ( len(llm.generate(prompt, use_tqdm=False)[0].prompt_token_ids) % cpu_block_size != 0 ): prompt = ". " + prompt assert subscriber.get_new_cpu_stored_events() test_count = 100 success_count = 0 for i in range(test_count): if ( llm.generate(prompt, sampling_params, use_tqdm=False)[0].outputs[0].text == " five" ): success_count += 1 assert success_count >= 0.5 * test_count @pytest.mark.parametrize("cpu_block_size", CPU_BLOCK_SIZES) @pytest.mark.parametrize("attn_backend", ATTN_BACKENDS) def test_cpu_offloading(cpu_block_size: int, attn_backend: str) -> None: """ Tests OffloadingConnector with CPUOffloadingSpec. """ # configure OffloadingConnector (spec_name=CPUOffloadingSpec by default) kv_transfer_config = KVTransferConfig( kv_connector="OffloadingConnector", kv_role="kv_both", kv_connector_extra_config={ "num_cpu_blocks": 1000, "block_size": cpu_block_size, }, ) port: int with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("0.0.0.0", 0)) port = s.getsockname()[1] events_endpoint = f"tcp://*:{port}" kv_events_config = KVEventsConfig( enable_kv_cache_events=True, publisher="zmq", endpoint=events_endpoint, topic="test", ) with set_env_var("VLLM_ATTENTION_BACKEND", attn_backend): llm = LLM( model="meta-llama/Llama-3.2-1B-Instruct", gpu_memory_utilization=0.5, kv_events_config=kv_events_config, kv_transfer_config=kv_transfer_config, ) events_endpoint = events_endpoint.replace("*", "127.0.0.1") subscriber = MockSubscriber(events_endpoint, topic=kv_events_config.topic) try: _latency_test(llm, subscriber) _accuracy_test(llm, subscriber) finally: subscriber.close() del llm