# Llama Stack vLLM is also available via [Llama Stack](https://github.com/llamastack/llama-stack). To install Llama Stack, run ```bash pip install llama-stack -q ``` ## Inference using OpenAI-Compatible API Then start the Llama Stack server and configure it to point to your vLLM server with the following settings: ```yaml inference: - provider_id: vllm0 provider_type: remote::vllm config: url: http://127.0.0.1:8000 ``` Please refer to [this guide](https://llama-stack.readthedocs.io/en/latest/providers/inference/remote_vllm.html) for more details on this remote vLLM provider. ## Inference using Embedded vLLM An [inline provider](https://github.com/llamastack/llama-stack/tree/main/llama_stack/providers/inline/inference) is also available. This is a sample of configuration using that method: ```yaml inference: - provider_type: vllm config: model: Llama3.1-8B-Instruct tensor_parallel_size: 4 ```