# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """Utilities for selecting and loading models.""" import contextlib import inspect import warnings from contextlib import contextmanager from dataclasses import dataclass, field from typing import Optional import torch import transformers from torch import nn from transformers.dynamic_module_utils import get_class_from_dynamic_module from vllm.attention import Attention from vllm.config import (ModelConfig, ModelImpl, VllmConfig, set_current_vllm_config) from vllm.logger import init_logger from vllm.model_executor.layers.linear import QKVCrossParallelLinear from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig, QuantizeMethodBase) from vllm.model_executor.models import ModelRegistry from vllm.model_executor.models.adapters import (as_classification_model, as_embedding_model, as_reward_model) from vllm.model_executor.models.interfaces import SupportsQuant from vllm.utils import is_pin_memory_available logger = init_logger(__name__) @contextlib.contextmanager def set_default_torch_dtype(dtype: torch.dtype): """Sets the default torch dtype to the given dtype.""" old_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) yield torch.set_default_dtype(old_dtype) def initialize_model( vllm_config: VllmConfig, *, prefix: str = "", model_class: Optional[type[nn.Module]] = None, model_config: Optional[ModelConfig] = None, ) -> nn.Module: """Initialize a model with the given configurations.""" if model_config is None: model_config = vllm_config.model_config if model_class is None: model_class, _ = get_model_architecture(model_config) if vllm_config.quant_config is not None: configure_quant_config(vllm_config.quant_config, model_class) signatures = inspect.signature(model_class.__init__) all_params = [param.name for param in signatures.parameters.values()] if "vllm_config" in all_params and "prefix" in all_params: # new-style model class with set_current_vllm_config(vllm_config, check_compile=True, prefix=prefix): return model_class(vllm_config=vllm_config, prefix=prefix) msg = ("vLLM model class should accept `vllm_config` and `prefix` as " "input arguments. Possibly you have an old-style model class" " registered from out of tree and it is used for new vLLM version. " "Check https://docs.vllm.ai/en/latest/design/arch_overview.html " "for the design and update the model class accordingly.") warnings.warn(msg, DeprecationWarning, stacklevel=2) logger.warning( "Trying to guess the arguments for old-style model class %s", model_class, ) # try to be compatible with old-style model class kwargs = {} if "prefix" in all_params: kwargs["prefix"] = prefix if "config" in all_params: kwargs["config"] = model_config.hf_config if "cache_config" in all_params: kwargs["cache_config"] = vllm_config.cache_config if "quant_config" in all_params: kwargs["quant_config"] = vllm_config.quant_config if "lora_config" in all_params: kwargs["lora_config"] = vllm_config.lora_config if "scheduler_config" in all_params: kwargs["scheduler_config"] = vllm_config.scheduler_config with set_current_vllm_config(vllm_config, check_compile=True, prefix=prefix): return model_class(**kwargs) def process_weights_after_loading(model: nn.Module, model_config: ModelConfig, target_device: torch.device) -> None: for _, module in model.named_modules(): if isinstance(module, QKVCrossParallelLinear): # NOTE(Isotr0py): special case for cross QKV layer because # q and kv proj aren't registered as submodules intentionally module.process_weights_after_loading() continue quant_method = getattr(module, "quant_method", None) if isinstance(quant_method, QuantizeMethodBase): # When quant methods need to process weights after loading # (for repacking, quantizing, etc), they expect parameters # to be on the global target device. This scope is for the # case where cpu offloading is used, where we will move the # parameters onto device for processing and back off after. with device_loading_context(module, target_device): quant_method.process_weights_after_loading(module) # Currently only used by MLA. # NOTE: This intentionally happens after other modules so we can easily # decompress the weights for MLA. for _, module in model.named_modules(): if isinstance(module, Attention) and \ hasattr(module, "process_weights_after_loading"): # TODO(lucas): see if there is a way to unify the signatures # of process_weights_after_loading module.process_weights_after_loading(model_config.dtype) @contextmanager def device_loading_context(module: torch.nn.Module, target_device: torch.device): if target_device.type == "cpu": # If target is CPU, no need to move anything yield module return original_device_states: dict[str, torch.device] = {} # Store original device states and move parameters to GPU if they're on CPU for name, p in module.named_parameters(): if p.device.type == "cpu": original_device_states[name] = p.device p.data = p.data.to(target_device) # Parameters already on target device are not touched try: yield module finally: # Restore parameters to their original devices, ignoring new parameters pin_memory = is_pin_memory_available() for name, p in module.named_parameters(): if name in original_device_states: original_device: torch.device = original_device_states[name] if original_device.type == "cpu": # `torch.empty_like` does not support `pin_memory` argument cpu_data = torch.empty_strided( size=p.data.size(), stride=p.data.stride(), dtype=p.data.dtype, layout=p.data.layout, device="cpu", pin_memory=pin_memory, ) cpu_data.copy_(p.data) p.data = cpu_data else: p.data = p.data.to(original_device) # New parameters or parameters already on target device are untouched def resolve_transformers_arch(model_config: ModelConfig, architectures: list[str]): for i, arch in enumerate(architectures): if arch == "TransformersForCausalLM": continue auto_map: dict[str, str] = getattr(model_config.hf_config, "auto_map", None) or dict() # Make sure that config class is always initialized before model class, # otherwise the model class won't be able to access the config class, # the expected auto_map should have correct order like: # "auto_map": { # "AutoConfig": "--", # "AutoModel": "--", # "AutoModelFor": "--", # }, auto_modules = { name: get_class_from_dynamic_module(module, model_config.model, revision=model_config.revision) for name, module in sorted(auto_map.items(), key=lambda x: x[0]) } model_module = getattr(transformers, arch, None) if model_module is None: if "AutoModel" not in auto_map: raise ValueError( f"Cannot find model module. '{arch}' is not a registered " "model in the Transformers library (only relevant if the " "model is meant to be in Transformers) and 'AutoModel' is " "not present in the model config's 'auto_map' (relevant " "if the model is custom).") model_module = auto_modules["AutoModel"] # TODO(Isotr0py): Further clean up these raises. # perhaps handled them in _ModelRegistry._raise_for_unsupported? if model_config.model_impl == ModelImpl.TRANSFORMERS: if not model_module.is_backend_compatible(): raise ValueError( f"The Transformers implementation of {arch} is not " "compatible with vLLM.") architectures[i] = "TransformersForCausalLM" if model_config.model_impl == ModelImpl.AUTO: if not model_module.is_backend_compatible(): raise ValueError( f"{arch} has no vLLM implementation and the Transformers " "implementation is not compatible with vLLM. Try setting " "VLLM_USE_V1=0.") logger.warning( "%s has no vLLM implementation, falling back to Transformers " "implementation. Some features may not be supported and " "performance may not be optimal.", arch) architectures[i] = "TransformersForCausalLM" return architectures def get_model_architecture( model_config: ModelConfig) -> tuple[type[nn.Module], str]: architectures = getattr(model_config.hf_config, "architectures", []) # Special handling for quantized Mixtral. # FIXME(woosuk): This is a temporary hack. mixtral_supported = [ "fp8", "compressed-tensors", "gptq_marlin", "awq_marlin", "quark" ] vllm_supported_archs = ModelRegistry.get_supported_archs() vllm_not_supported = not any(arch in vllm_supported_archs for arch in architectures) if (model_config.model_impl == ModelImpl.TRANSFORMERS or model_config.model_impl != ModelImpl.VLLM and vllm_not_supported): architectures = resolve_transformers_arch(model_config, architectures) elif (model_config.quantization is not None and model_config.quantization not in mixtral_supported and "MixtralForCausalLM" in architectures): architectures = ["QuantMixtralForCausalLM"] model_cls, arch = ModelRegistry.resolve_model_cls(architectures) if model_config.task == "embed": model_cls = as_embedding_model(model_cls) elif model_config.task == "classify": model_cls = as_classification_model(model_cls) elif model_config.task == "reward": model_cls = as_reward_model(model_cls) return model_cls, arch def get_architecture_class_name(model_config: ModelConfig) -> str: return get_model_architecture(model_config)[1] @dataclass class ParamMapping: """ A class to handle parameter mapping for model weight loading. It creates a bidirectional mapping between packed parameters and their constituent parts. """ packed_mapping: dict[str, list[str]] inverse_packed_mapping: dict[str, tuple[str, int]] = field(default_factory=dict) def __post_init__(self): for packed_name, sub_params in self.packed_mapping.items(): # Skip self-contained cases (e.g., {"W_pack": ["W_pack"]}) if len(sub_params) == 1 and sub_params[0] == packed_name: continue for index, param_name in enumerate(sub_params): self.inverse_packed_mapping[param_name] = ( packed_name, index, ) def get_sub_modules(self, module_name: str) -> Optional[tuple[str, list[str]]]: for key, value in self.packed_mapping.items(): if module_name.endswith(key): return key, value return None def configure_quant_config(quant_config: QuantizationConfig, model_class: type[nn.Module]): """ Pass packed_modules_mapping by reference to quant_config so that quant_config can properly match fused modules Note that model attributes are passed by reference to quant_config, enabling them to be updated by model_class.__new__ (ex. chatglm, qwen) Once the `SupportsQuant` mixin has been added to all models, this function can be removed """ if not issubclass(model_class, SupportsQuant): hf_to_vllm_mapper = getattr(model_class, "hf_to_vllm_mapper", None) packed_mapping = getattr(model_class, "packed_modules_mapping", None) # pass mappings by reference to quant_config if hf_to_vllm_mapper is not None: quant_config.apply_vllm_mapper(hf_to_vllm_mapper) if packed_mapping is not None: quant_config.packed_modules_mapping = packed_mapping