# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import operator import pytest import torch from torch.fx.experimental.proxy_tensor import make_fx from vllm.compilation.backends import split_graph def test_getitem_moved_to_producer_subgraph(): """ Test that getitem operations are moved to the same subgraph as their input, preventing tuple inputs to submodules. """ def model_fn(x: torch.Tensor) -> torch.Tensor: # torch.split returns a tuple, creating real getitem operations # Should become first submodule that produces tuple chunks = torch.split(x, x.shape[0] // 2, dim=0) # Following ops should become second submodule that consumes tuple result_0 = torch.relu(chunks[0]) result_1 = torch.relu(chunks[1]) return torch.cat([result_0, result_1], dim=0) x = torch.randn(4, 3) gm = make_fx(model_fn)(x) has_getitem = any( node.op == "call_function" and node.target == operator.getitem for node in gm.graph.nodes ) assert has_getitem, "Test setup failed: graph should contain getitem operations" # Split on tuple producer aten::split split_ops = ["aten::split.Tensor"] split_gm, split_items = split_graph(gm, split_ops) assert len(split_items) == 2, "Graph should be split into 2 submodules" for split_item in split_items: submodule = split_item.graph getitem_on_placeholder = [] for node in submodule.graph.nodes: if ( node.op == "call_function" and node.target == operator.getitem and node.args[0].op == "placeholder" ): getitem_on_placeholder.append(node) assert len(getitem_on_placeholder) == 0, ( f"Submodule {split_item.submod_name} has getitem operations on " f"placeholder nodes: {[n.name for n in getitem_on_placeholder]}. " "This means tuple inputs were not properly eliminated." ) new_x = torch.randn(4, 3) output_original = gm(new_x) output_split = split_gm(new_x) assert torch.allclose(output_original, output_split), "Output mismatch" def test_no_tuple_inputs_with_multiple_consumers(): """ Test that when a tuple is consumed by multiple split operations, getitem operations are properly moved to avoid tuple inputs. """ def model_fn(x: torch.Tensor) -> torch.Tensor: # torch.split returns a tuple, creating real getitem operations # Should become first submodule that produces tuple chunks = torch.split(x, x.shape[0] // 2, dim=0) # These should become second submodule consuming tuple result_1 = torch.relu(chunks[0]) result_2 = torch.relu(chunks[1]) # Artificial graph splitting point to create another # independent submodule that consumes tuple later # This would become the third submodule result_1 = torch.sigmoid(result_1) # Fourth submodule that consumes tuple result = torch.cat([chunks[0], chunks[1], result_1, result_2]) return result x = torch.randn(4, 3) gm = make_fx(model_fn)(x) has_getitem = any( node.op == "call_function" and node.target == operator.getitem for node in gm.graph.nodes ) assert has_getitem, "Test setup failed: graph should contain getitem operations" split_ops = ["aten::split.Tensor", "aten::sigmoid"] split_gm, split_items = split_graph(gm, split_ops) assert len(split_items) == 4, "Graph should be split into 4 submodules" for split_item in split_items: submodule = split_item.graph for node in submodule.graph.nodes: if ( node.op == "call_function" and node.target == operator.getitem and node.args[0].op == "placeholder" ): pytest.fail( f"Submodule {split_item.submod_name} has getitem on " f"placeholder {node.args[0].name}, indicating it receives " "a tuple input" ) new_x = torch.randn(4, 3) output_original = gm(new_x) output_split = split_gm(new_x) assert torch.allclose(output_original, output_split), "Output mismatch after split"