# SPDX-License-Identifier: Apache-2.0 """Minimal implementation of CLIPVisionModel intended to be only used within a vision language model.""" from typing import Iterable, Optional, Set, Tuple, Union import torch import torch.nn as nn from transformers import CLIPVisionConfig from vllm.attention.layer import MultiHeadAttention from vllm.distributed import divide, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.models.interfaces import SupportsQuant from .vision import VisionEncoderInfo, resolve_visual_encoder_outputs class CLIPEncoderInfo(VisionEncoderInfo[CLIPVisionConfig]): def get_num_image_tokens( self, *, image_width: int, image_height: int, ) -> int: return self.get_patch_grid_length()**2 + 1 def get_max_image_tokens(self) -> int: return self.get_patch_grid_length()**2 + 1 def get_image_size(self) -> int: return self.vision_config.image_size def get_patch_size(self) -> int: return self.vision_config.patch_size def get_patch_grid_length(self) -> int: image_size, patch_size = self.get_image_size(), self.get_patch_size() assert image_size % patch_size == 0 return image_size // patch_size # Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/clip/modeling_clip.py#L164 # noqa class CLIPVisionEmbeddings(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size assert self.image_size % self.patch_size == 0 self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size)**2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to( dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class CLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( "embed_dim must be divisible by num_heads " f"(got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads}).") self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.qkv_proj = QKVParallelLinear( hidden_size=self.embed_dim, head_size=self.head_dim, total_num_heads=self.num_heads, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.out_proj = RowParallelLinear( input_size=self.embed_dim, output_size=self.embed_dim, quant_config=quant_config, prefix=f"{prefix}.out_proj", ) self.tp_size = get_tensor_model_parallel_world_size() self.num_heads_per_partition = divide(self.num_heads, self.tp_size) self.attn = MultiHeadAttention(self.num_heads_per_partition, self.head_dim, self.scale) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, ): """Input shape: Batch x Time x Channel""" qkv_states, _ = self.qkv_proj(hidden_states) query_states, key_states, value_states = qkv_states.chunk(3, dim=-1) out = self.attn(query_states, key_states, value_states) attn_output, _ = self.out_proj(out) return attn_output, None class CLIPMLP(nn.Module): def __init__( self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.activation_fn = get_act_fn(config.hidden_act) self.fc1 = ColumnParallelLinear(config.hidden_size, config.intermediate_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.fc1") self.fc2 = RowParallelLinear(config.intermediate_size, config.hidden_size, bias=True, quant_config=quant_config, prefix=f"{prefix}.fc2") def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states, _ = self.fc2(hidden_states) return hidden_states class CLIPEncoderLayer(nn.Module): def __init__( self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.self_attn = CLIPAttention( config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = CLIPMLP(config, quant_config=quant_config, prefix=f"{prefix}.mlp") self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, _ = self.self_attn(hidden_states=hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class CLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPEncoderLayer`]. Args: config: CLIPConfig """ def __init__( self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None, prefix: str = "", ) -> None: super().__init__() self.config = config if num_hidden_layers_override is None: num_hidden_layers = config.num_hidden_layers else: num_hidden_layers = num_hidden_layers_override self.layers = nn.ModuleList([ CLIPEncoderLayer(config=config, quant_config=quant_config, prefix=f"{prefix}.layers.{layer_idx}") for layer_idx in range(num_hidden_layers) ]) def forward( self, inputs_embeds: torch.Tensor, return_all_hidden_states: bool ) -> Union[torch.Tensor, list[torch.Tensor]]: hidden_states_pool = [inputs_embeds] hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states = encoder_layer(hidden_states) if return_all_hidden_states: hidden_states_pool.append(hidden_states) # If we have multiple feature sample layers, we return all hidden # states in order and grab the ones we need by index. if return_all_hidden_states: return hidden_states_pool return hidden_states class CLIPVisionTransformer(nn.Module): def __init__( self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, *, num_hidden_layers_override: Optional[int] = None, require_post_norm: Optional[bool] = None, prefix: str = "", ) -> None: super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPVisionEmbeddings(config) # NOTE: This typo of "layrnorm" is not fixed on purpose to match # the original transformers code and name of the model weights. self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = CLIPEncoder( config=config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override, prefix=f"{prefix}.encoder", ) num_hidden_layers = config.num_hidden_layers if len(self.encoder.layers) > config.num_hidden_layers: raise ValueError( f"The original encoder only has {num_hidden_layers} " f"layers, but you requested {len(self.encoder.layers)} layers." ) # If possible, skip post_layernorm to conserve memory if require_post_norm is None: require_post_norm = len(self.encoder.layers) == num_hidden_layers if require_post_norm: self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) else: self.post_layernorm = None def forward( self, pixel_values: torch.Tensor, feature_sample_layers: Optional[list[int]] = None, ) -> torch.Tensor: hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) return_all_hidden_states = feature_sample_layers is not None # Produces either the last layer output or all of the hidden states, # depending on if we have feature_sample_layers or not encoder_outputs = self.encoder( inputs_embeds=hidden_states, return_all_hidden_states=return_all_hidden_states) # Handle post-norm (if applicable) and stacks feature layers if needed encoder_outputs = resolve_visual_encoder_outputs( encoder_outputs, feature_sample_layers, self.post_layernorm, self.config.num_hidden_layers) return encoder_outputs class CLIPVisionModel(nn.Module, SupportsQuant): config_class = CLIPVisionConfig main_input_name = "pixel_values" packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]} def __init__( self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, *, num_hidden_layers_override: Optional[int] = None, require_post_norm: Optional[bool] = None, prefix: str = "", ) -> None: super().__init__() self.vision_model = CLIPVisionTransformer( config=config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override, require_post_norm=require_post_norm, prefix=f"{prefix}.vision_model") def forward( self, pixel_values: torch.Tensor, feature_sample_layers: Optional[list[int]] = None, ) -> torch.Tensor: return self.vision_model(pixel_values, feature_sample_layers) @property def device(self): return next(self.parameters()).device # (TODO) Add prefix argument for filtering out weights to be loaded # ref: https://github.com/vllm-project/vllm/pull/7186#discussion_r1734163986 def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] params_dict = dict(self.named_parameters()) loaded_params: Set[str] = set() layer_count = len(self.vision_model.encoder.layers) for name, loaded_weight in weights: # post_layernorm is not needed in CLIPVisionModel if (name.startswith("vision_model.post_layernorm") and self.vision_model.post_layernorm is None): continue # omit layers when num_hidden_layers_override is set if name.startswith("vision_model.encoder.layers"): layer_idx = int(name.split(".")[3]) if layer_idx >= layer_count: continue for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params