# SPDX-License-Identifier: Apache-2.0 import copy import hashlib import os from contextlib import ExitStack from typing import Any, Callable, Dict, List, Optional, Tuple from unittest.mock import patch import torch import torch._inductor.compile_fx import torch.fx as fx from vllm.config import VllmConfig class CompilerInterface: """ The interface for a compiler that can be used by vLLM. """ # The name of the compiler, e.g. inductor. # This is a class-level attribute. name: str def initialize_cache(self, cache_dir: str, disable_cache: bool = False): """ when the vLLM process uses `cache_dir` as the cache directory, the compiler should initialize itself with the cache directory, e.g. by re-directing its own cache directory to a sub-directory. """ pass def compute_hash(self, vllm_config: VllmConfig) -> str: """ Gather all the relevant information from the vLLM config, to compute a hash so that we can cache the compiled model. See :meth:`VllmConfig.compute_hash` to check what information is already considered by default. This function should only consider the information that is specific to the compiler. """ return "" def compile( self, graph: fx.GraphModule, example_inputs: List[Any], compiler_config: Dict[str, Any], runtime_shape: Optional[int] = None ) -> Tuple[Optional[Callable], Optional[Any]]: """ Compile the graph with the given example inputs and compiler config, with a runtime shape. If the `runtime_shape` is None, it means the `example_inputs` have a dynamic shape. Otherwise, the `runtime_shape` specifies the shape of the inputs. Right now we only support one variable shape for all inputs, which is the batchsize (number of tokens) during inference. Dynamo will make sure `graph(*example_inputs)` is valid. The function should return a compiled callable function, as well as a handle that can be used to directly load the compiled function. The handle should be a plain Python object, preferably a string or a file path for readability. If the compiler doesn't support caching, it should return None for the handle. If the compiler fails to compile the graph, it should return None for the compiled function as well. """ return None, None def load(self, handle: Any, graph: fx.GraphModule, example_inputs: List[Any], graph_index: int, runtime_shape: Optional[int] = None) -> Callable: """ Load the compiled function from the handle. Raises an error if the handle is invalid. The handle is the second return value of the `compile` function. """ raise NotImplementedError("caching is not supported") class AlwaysHitShapeEnv: """ Why do we need this class: For normal `torch.compile` usage, every compilation will have one Dynamo bytecode compilation and one Inductor compilation. The Inductor compilation happens under the context of the Dynamo bytecode compilation, and that context is used to determine the dynamic shape information, etc. For our use case, we only run Dynamo bytecode compilation once, and run Inductor compilation multiple times with different shapes plus a general shape. The compilation for specific shapes happens outside of the context of the Dynamo bytecode compilation. At that time, we don't have shape environment to provide to Inductor, and it will fail the Inductor code cache lookup. By providing a dummy shape environment that always hits, we can make the Inductor code cache lookup always hit, and we can compile the graph for different shapes as needed. The following dummy methods are obtained by trial-and-error until it works. """ def __init__(self) -> None: self.guards: List[Any] = [] def evaluate_guards_expression(self, *args, **kwargs): return True def get_pruned_guards(self, *args, **kwargs): return [] def produce_guards_expression(self, *args, **kwargs): return "" class InductorAdaptor(CompilerInterface): """ The adaptor for the Inductor compiler, version 2.5 and 2.6. """ name = "inductor" def compute_hash(self, vllm_config: VllmConfig) -> str: factors: List[Any] = [] # summarize system state from torch._inductor.codecache import CacheBase system_factors = CacheBase.get_system() factors.append(system_factors) # summarize pytorch state from torch._inductor.codecache import torch_key torch_factors = torch_key() factors.append(torch_factors) hash_str = hashlib.md5(str(factors).encode()).hexdigest()[:10] return hash_str def initialize_cache(self, cache_dir: str, disable_cache: bool = False): if disable_cache: return # redirect the cache directory to a sub-directory # set flags so that Inductor and Triton store their cache # in the cache_dir, then users only need to copy the cache_dir # to another machine to reuse the cache. inductor_cache = os.path.join(cache_dir, "inductor_cache") os.makedirs(inductor_cache, exist_ok=True) os.environ["TORCHINDUCTOR_CACHE_DIR"] = inductor_cache triton_cache = os.path.join(cache_dir, "triton_cache") os.makedirs(triton_cache, exist_ok=True) os.environ["TRITON_CACHE_DIR"] = triton_cache self.cache_dir = cache_dir def compile( self, graph: fx.GraphModule, example_inputs: List[Any], compiler_config: Dict[str, Any], runtime_shape: Optional[int] = None ) -> Tuple[Optional[Callable], Optional[Any]]: from torch._inductor import config current_config = config.get_config_copy() from torch._inductor.compile_fx import compile_fx # disable remote cache current_config["fx_graph_cache"] = True current_config["fx_graph_remote_cache"] = False if compiler_config is not None: current_config.update(compiler_config) if isinstance(runtime_shape, int): # for a specific batchsize, tuning triton kernel parameters # can be beneficial current_config["max_autotune"] = True current_config["coordinate_descent_tuning"] = True # inductor can inplace modify the graph, so we need to copy it # see https://github.com/pytorch/pytorch/issues/138980 graph = copy.deepcopy(graph) # it's the first time we compile this graph # the assumption is that we don't have nested Inductor compilation. # compiled_fx_graph_hash will only be called once, and we can hook # it to get the hash of the compiled graph directly. hash_str, file_path = None, None from torch._inductor.codecache import (FxGraphCache, compiled_fx_graph_hash) if torch.__version__.startswith("2.5"): original_load = FxGraphCache.load original_load_name = "torch._inductor.codecache.FxGraphCache.load" def hijack_load(*args, **kwargs): inductor_compiled_graph = original_load(*args, **kwargs) nonlocal file_path compiled_fn = inductor_compiled_graph.current_callable file_path = compiled_fn.__code__.co_filename # noqa if not file_path.startswith(self.cache_dir): # hooked in the align_inputs_from_check_idxs function # in torch/_inductor/utils.py for cell in compiled_fn.__closure__: if not callable(cell.cell_contents): continue if cell.cell_contents.__code__.co_filename.startswith( self.cache_dir): # this is the real file path compiled from Inductor file_path = cell.cell_contents.__code__.co_filename break return inductor_compiled_graph hijacked_compile_fx_inner = torch._inductor.compile_fx.compile_fx_inner # noqa elif torch.__version__ >= "2.6": # function renamed in 2.6 original_load_name = None def hijacked_compile_fx_inner(*args, **kwargs): output = torch._inductor.compile_fx.compile_fx_inner( *args, **kwargs) nonlocal hash_str inductor_compiled_graph = output if inductor_compiled_graph is not None: nonlocal file_path file_path = inductor_compiled_graph.current_callable.__code__.co_filename # noqa hash_str = inductor_compiled_graph._fx_graph_cache_key return output def hijack_compiled_fx_graph_hash(*args, **kwargs): out = compiled_fx_graph_hash(*args, **kwargs) nonlocal hash_str hash_str = out[0] return out def _check_can_cache(*args, **kwargs): # no error means it can be cached. # Inductor refuses to cache the graph outside of Dynamo # tracing context, and also disables caching for graphs # with high-order ops. # For vLLM, in either case, we want to cache the graph. # see https://github.com/pytorch/pytorch/blob/9f5ebf3fc609105a74eab4ccc24932d6353ff566/torch/_inductor/codecache.py#L1221 # noqa return def _get_shape_env() -> AlwaysHitShapeEnv: return AlwaysHitShapeEnv() with ExitStack() as stack: # hijack to get the compiled graph itself if original_load_name is not None: stack.enter_context(patch(original_load_name, hijack_load)) # for hijacking the hash of the compiled graph stack.enter_context( patch("torch._inductor.codecache.compiled_fx_graph_hash", hijack_compiled_fx_graph_hash)) # for providing a dummy shape environment stack.enter_context( patch("torch._inductor.codecache.FxGraphCache._get_shape_env", _get_shape_env)) # for forcing the graph to be cached stack.enter_context( patch( "torch._inductor.codecache.FxGraphCache._check_can_cache", _check_can_cache)) compiled_graph = compile_fx( graph, example_inputs, inner_compile=hijacked_compile_fx_inner, config_patches=current_config) assert hash_str is not None, ( "failed to get the hash of the compiled graph") assert file_path is not None, ( "failed to get the file path of the compiled graph") return compiled_graph, (hash_str, file_path) def load(self, handle: Any, graph: fx.GraphModule, example_inputs: List[Any], graph_index: int, runtime_shape: Optional[int] = None) -> Callable: assert isinstance(handle, tuple) assert isinstance(handle[0], str) assert isinstance(handle[1], str) hash_str = handle[0] from torch._inductor.codecache import FxGraphCache with patch("torch._inductor.codecache.FxGraphCache._get_shape_env", lambda *args, **kwargs: AlwaysHitShapeEnv()): if torch.__version__.startswith("2.5"): inductor_compiled_graph = FxGraphCache._lookup_graph( hash_str, example_inputs, True, False) assert inductor_compiled_graph is not None, ( "Inductor cache lookup failed. Please remove" f"the cache directory and try again." # noqa ) elif torch.__version__ >= "2.6": from torch._inductor.output_code import ( CompiledFxGraphConstantsWithGm) constants = CompiledFxGraphConstantsWithGm(graph) inductor_compiled_graph, _ = FxGraphCache._lookup_graph( hash_str, example_inputs, True, None, constants) assert inductor_compiled_graph is not None, ( "Inductor cache lookup failed. Please remove" f"the cache directory and try again." # noqa ) # Inductor calling convention (function signature): # f(list) -> tuple # Dynamo calling convention (function signature): # f(*args) -> Any # need to know if the graph returns a tuple from torch._inductor.compile_fx import graph_returns_tuple returns_tuple = graph_returns_tuple(graph) # this is the callable we return to Dynamo to run def compiled_graph(*args): # convert args to list list_args = list(args) graph_output = inductor_compiled_graph(list_args) # unpack the tuple if needed if returns_tuple: return graph_output else: return graph_output[0] return compiled_graph class EagerAdaptor(CompilerInterface): name = "eager" def compile( self, graph: fx.GraphModule, example_inputs: List[Any], compiler_config: Dict[str, Any], runtime_shape: Optional[int] = None ) -> Tuple[Optional[Callable], Optional[Any]]: # we don't need to compile the graph, just return the graph itself. # It does not support caching, return None for the handle. return graph, None