# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from argparse import Namespace from vllm import LLM, EngineArgs from vllm.utils.argparse_utils import FlexibleArgumentParser def parse_args(): parser = FlexibleArgumentParser() parser = EngineArgs.add_cli_args(parser) # Set example specific arguments parser.set_defaults( model="BAAI/bge-m3", runner="pooling", enforce_eager=True, ) return parser.parse_args() def main(args: Namespace): # Sample prompts. prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] # Create an LLM. # You should pass runner="pooling" for embedding models llm = LLM(**vars(args)) # Generate embedding. The output is a list of EmbeddingRequestOutputs. outputs = llm.embed(prompts) # Print the outputs. print("\nGenerated Outputs:\n" + "-" * 60) for prompt, output in zip(prompts, outputs): embeds = output.outputs.embedding print(len(embeds)) # Generate embedding for each token. The output is a list of PoolingRequestOutput. outputs = llm.encode(prompts, pooling_task="token_embed") # Print the outputs. print("\nGenerated Outputs:\n" + "-" * 60) for prompt, output in zip(prompts, outputs): multi_vector = output.outputs.data print(multi_vector.shape) if __name__ == "__main__": args = parse_args() main(args)