# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch import torch.distributed as dist import vllm.envs as envs from vllm.executor.executor_base import ExecutorBase from vllm.logger import init_logger from vllm.utils import (get_distributed_init_method, get_ip, get_open_port, run_method) from vllm.v1.engine import ReconfigureDistributedRequest, ReconfigureRankType from vllm.worker.worker_base import WorkerWrapperBase logger = init_logger(__name__) class UniProcExecutor(ExecutorBase): uses_ray: bool = False def _init_executor(self) -> None: """Initialize the worker and load the model. """ self.driver_worker = WorkerWrapperBase(vllm_config=self.vllm_config, rpc_rank=0) distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) local_rank = 0 # set local rank as the device index if specified device_info = self.vllm_config.device_config.device.__str__().split( ":") if len(device_info) > 1: local_rank = int(device_info[1]) rank = 0 is_driver_worker = True kwargs = dict( vllm_config=self.vllm_config, local_rank=local_rank, rank=rank, distributed_init_method=distributed_init_method, is_driver_worker=is_driver_worker, ) self.collective_rpc("init_worker", args=([kwargs], )) self.collective_rpc("init_device") self.collective_rpc("load_model") def collective_rpc(self, method: Union[str, Callable], timeout: Optional[float] = None, args: Tuple = (), kwargs: Optional[Dict] = None) -> List[Any]: if kwargs is None: kwargs = {} answer = run_method(self.driver_worker, method, args, kwargs) return [answer] def check_health(self) -> None: # UniProcExecutor will always be healthy as long as # it's running. return def reinitialize_distributed( self, reconfig_request: ReconfigureDistributedRequest) -> None: self.driver_worker.reinitialize_distributed(reconfig_request) if reconfig_request.new_data_parallel_rank == \ ReconfigureRankType.SHUTDOWN_CURRENT_RANK: self.shutdown() return UniProcExecutorAsync = UniProcExecutor class ExecutorWithExternalLauncher(UniProcExecutor): """An executor that uses external launchers to launch engines, specially designed for torchrun-compatible launchers, for offline inference with tensor parallelism. see https://github.com/vllm-project/vllm/issues/11400 for the motivation, and examples/offline_inference/torchrun_example.py for the usage example. The key idea: although it is tensor-parallel inference, we only create one worker per executor, users will launch multiple engines with torchrun-compatible launchers, and all these engines work together to process the same prompts. When scheduling is deterministic, all the engines will generate the same outputs, and they don't need to synchronize the states with each other. """ uses_ray: bool = False def _init_executor(self) -> None: """Initialize the worker and load the model. """ assert self.vllm_config.scheduler_config.delay_factor == 0.0, \ ("ExecutorWithExternalLauncher needs deterministic " "execution, so it" "does not support delay_factor in scheduling") if envs.VLLM_USE_V1: assert not envs.VLLM_ENABLE_V1_MULTIPROCESSING, \ ("To get deterministic execution in V1, " "please set VLLM_ENABLE_V1_MULTIPROCESSING=0") self.driver_worker = WorkerWrapperBase(vllm_config=self.vllm_config, rpc_rank=0) # engines are launched in torchrun-compatible launchers # so we can use the env:// method. # required env vars: # - RANK # - LOCAL_RANK # - MASTER_ADDR # - MASTER_PORT distributed_init_method = "env://" rank = int(os.environ["RANK"]) local_rank = int(os.environ["LOCAL_RANK"]) is_driver_worker = True kwargs = dict( vllm_config=self.vllm_config, local_rank=local_rank, rank=rank, distributed_init_method=distributed_init_method, is_driver_worker=is_driver_worker, ) self.collective_rpc("init_worker", args=([kwargs], )) self.collective_rpc("init_device") self.collective_rpc("load_model") def determine_num_available_blocks(self) -> Tuple[int, int]: """ Determine the number of available KV blocks. Add an additional all_reduce to get the min across all ranks. Note that even if we have the same `gpu_memory_utilization` and `swap_space`, the available memory in every rank might still differ because NCCL can take different amounts of memory in different ranks. Therefore, it is necessary to test if all ranks agree on the same KV cache configuration. """ a, b = super().determine_num_available_blocks() from vllm.distributed.parallel_state import get_world_group cpu_group = get_world_group().cpu_group a_tensor = torch.tensor([a], device="cpu", dtype=torch.int64) b_tensor = torch.tensor([b], device="cpu", dtype=torch.int64) dist.all_reduce(a_tensor, group=cpu_group, op=dist.ReduceOp.MIN) dist.all_reduce(b_tensor, group=cpu_group, op=dist.ReduceOp.MIN) return a_tensor.item(), b_tensor.item()