# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from importlib.util import find_spec import pytest import torch import vllm.envs as envs from vllm.compilation.collective_fusion import AllReduceFusionPass from vllm.config import (CompilationConfig, CompilationLevel, DeviceConfig, ModelConfig, PassConfig, VllmConfig) from vllm.distributed import tensor_model_parallel_all_reduce from vllm.distributed.parallel_state import (init_distributed_environment, initialize_model_parallel) from vllm.model_executor.layers.layernorm import RMSNorm from vllm.platforms import current_platform from vllm.utils import update_environment_variables from ..utils import multi_gpu_test from .backend import TestBackend class TestAllReduceRMSNormModel(torch.nn.Module): def __init__(self, hidden_size=16, eps=1e-6): super().__init__() self.hidden_size = hidden_size self.eps = eps self.norm = RMSNorm(hidden_size, eps) def forward(self, hidden_states, residual): view = hidden_states.reshape(-1, self.hidden_size) all_reduce = tensor_model_parallel_all_reduce(view) norm = self.norm(all_reduce) return norm def ops_in_model_before(self): return [torch.ops.vllm.all_reduce.default] def ops_in_model_after(self): return [torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default] class TestAllReduceFusedAddRMSNormModel(torch.nn.Module): def __init__(self, hidden_size=16, eps=1e-6): super().__init__() self.hidden_size = hidden_size self.eps = eps self.norm = RMSNorm(hidden_size, eps) def forward(self, hidden_states, residual): view = hidden_states.reshape(-1, self.hidden_size) all_reduce = tensor_model_parallel_all_reduce(view) norm, _ = self.norm(all_reduce, residual) return norm def ops_in_model_before(self): return [torch.ops.vllm.all_reduce.default] def ops_in_model_after(self): return [torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default] @multi_gpu_test(num_gpus=2) @pytest.mark.parametrize( "test_model", [TestAllReduceRMSNormModel, TestAllReduceFusedAddRMSNormModel]) @pytest.mark.parametrize("batch_size", [8]) @pytest.mark.parametrize("seq_len", [8]) @pytest.mark.parametrize("hidden_size", [4096]) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"], reason="Only test on CUDA") @pytest.mark.skipif(not find_spec("flashinfer"), reason="flashinfer is not installed") @pytest.mark.skipif(not current_platform.is_device_capability(100), reason="Only test on SM100") def test_all_reduce_fusion_pass_replace(test_model: torch.nn.Module, batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype): num_processes = 2 def run_torch_spawn(fn, nprocs): torch.multiprocessing.spawn(fn, args=(num_processes, test_model, batch_size, seq_len, hidden_size, dtype), nprocs=nprocs) run_torch_spawn(all_reduce_fusion_pass_on_test_model, num_processes) def all_reduce_fusion_pass_on_test_model(local_rank: int, world_size: int, test_model_cls: torch.nn.Module, batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype): current_platform.seed_everything(0) device = torch.device(f"cuda:{local_rank}") torch.cuda.set_device(device) torch.set_default_device(device) torch.set_default_dtype(dtype) update_environment_variables({ 'RANK': str(local_rank), 'LOCAL_RANK': str(local_rank), 'WORLD_SIZE': str(world_size), 'MASTER_ADDR': 'localhost', 'MASTER_PORT': '12345', }) init_distributed_environment() initialize_model_parallel(tensor_model_parallel_size=world_size) vllm_config = VllmConfig( compilation_config=CompilationConfig(level=CompilationLevel.PIECEWISE, custom_ops=["+rms_norm"], compile_sizes=[2, 4, 8])) vllm_config.compilation_config.pass_config = PassConfig( enable_fi_allreduce_fusion=True) vllm_config.device_config = DeviceConfig(device=torch.device("cuda")) # this is a fake model name to construct the model config # in the vllm_config, it's not really used. model_name = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e" vllm_config.model_config = ModelConfig(model=model_name, trust_remote_code=True, dtype=dtype, seed=42) all_reduce_fusion_pass = AllReduceFusionPass(vllm_config) backend = TestBackend(all_reduce_fusion_pass) model = test_model_cls(hidden_size) hidden_states = torch.randn((batch_size * seq_len, hidden_size), requires_grad=False) residual = torch.randn((batch_size * seq_len, hidden_size), requires_grad=False) compiled_model = torch.compile(model, backend=backend) compiled_model(hidden_states, residual) backend.check_before_ops(model.ops_in_model_before(), fully_replaced=False) backend.check_after_ops(model.ops_in_model_after()) del all_reduce_fusion_pass