# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only BaiChuan model compatible with HuggingFace weights.""" import math from collections.abc import Iterable from itertools import islice import torch from torch import nn from transformers import PretrainedConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import ( get_pp_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, row_parallel_weight_loader, ) from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP, SupportsQuant from .utils import ( AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor: closest_power_of_2 = 2 ** math.floor(math.log2(total_num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32, ) powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != total_num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32, ) num_remaining_heads = min( closest_power_of_2, total_num_heads - closest_power_of_2 ) extra_powers = torch.arange( start=1, end=1 + 2 * num_remaining_heads, step=2, dtype=torch.int32 ) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) return slopes class BaiChuanMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: QuantizationConfig | None = None, ): super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class BaiChuanAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, hidden_size: int, num_heads: int, position_embedding: str, rope_theta: float = 10000, max_position_embeddings: int = 8192, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.hidden_size = hidden_size tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = self.total_num_heads // tensor_model_parallel_world_size self.head_dim = hidden_size // self.total_num_heads self.position_embedding = position_embedding self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings # pylint: disable=invalid-name self.W_pack = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_heads, bias=False, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) # Create the alibi slopes and slice them. if self.position_embedding == "ALIBI": tp_rank = get_tensor_model_parallel_rank() head_start = tp_rank * self.num_heads head_end = (tp_rank + 1) * self.num_heads alibi_slopes = _get_alibi_slopes(self.total_num_heads) alibi_slopes = alibi_slopes[head_start:head_end].tolist() scaling = self.head_dim**-0.5 self.attn = Attention( self.num_heads, self.head_dim, scaling, alibi_slopes=alibi_slopes, quant_config=quant_config, prefix=f"{prefix}.attn", ) else: self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=self.max_position_embeddings, base=self.rope_theta, ) self.scaling = self.head_dim**-0.5 self.attn = Attention( self.num_heads, self.head_dim, self.scaling, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.W_pack(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) if self.position_embedding != "ALIBI": q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.o_proj(attn_output) return output class BaiChuanDecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, position_embedding: str, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.self_attn = BaiChuanAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, position_embedding=position_embedding, rope_theta=rope_theta, max_position_embeddings=max_position_embeddings, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) self.mlp = BaiChuanMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_torch_compile class BaiChuanModel(nn.Module): def __init__( self, vllm_config: VllmConfig, prefix: str = "", position_embedding: str = "ROPE", ) -> None: super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: BaiChuanDecoderLayer( config, position_embedding, cache_config, quant_config, prefix=prefix ), prefix=f"{prefix}.layers", ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states, residual = layer( positions, hidden_states, residual, ) if not get_pp_group().is_last_rank: return IntermediateTensors( { "hidden_states": hidden_states, "residual": residual, } ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class BaiChuanBaseForCausalLM(nn.Module, SupportsLoRA, SupportsPP, SupportsQuant): packed_modules_mapping = { "W_pack": ["W_pack"], "gate_up_proj": [ "gate_proj", "up_proj", ], } def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", position_embedding: str = "ROPE", ): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config self.config = config self.lora_config = lora_config self.tp_size = get_tensor_model_parallel_world_size() self.quant_config = quant_config self.model = BaiChuanModel( vllm_config=vllm_config, prefix=prefix, position_embedding=position_embedding, ) self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) self.lm_head.weight.weight_loader = self.lm_head_weight_loader if self.config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights) def lm_head_weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): # Unlike Baichuan, Baichuan2 normalizes the head weights. # Refer to: # https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/84603cde5ebffb6084e476cfaeceaf0b8b91fe54/modeling_baichuan.py#L508 # Distinguish between Baichuan and Baichuan2 by checking the # vocab size. This is suggested by # https://github.com/vllm-project/vllm/pull/1022#discussion_r1325652704 is_baichuan2 = self.config.vocab_size == 125696 if is_baichuan2: loaded_weight = torch.nn.functional.normalize(loaded_weight) if self.tp_size > 1: row_parallel_weight_loader(param, loaded_weight) else: default_weight_loader(param, loaded_weight) class BaichuanForCausalLM(BaiChuanBaseForCausalLM): """Baichuan 13B and Baichuan2 7B/13B. NOTE: the class name has a lower case 'c'. """ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config if config.hidden_size == 4096: # baichuan2 7b super().__init__( vllm_config=vllm_config, prefix=prefix, position_embedding="ROPE" ) else: # baichuan 13b, baichuan2 13b super().__init__( vllm_config=vllm_config, prefix=prefix, position_embedding="ALIBI" ) class BaiChuanForCausalLM(BaiChuanBaseForCausalLM): """Baichuan 7B. NOTE: the class name has an upper case 'C'. """ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__( vllm_config=vllm_config, prefix=prefix, position_embedding="ROPE" )