# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Iterable import torch import torch.nn as nn from transformers import PretrainedConfig from vllm.compilation.decorators import support_torch_compile from vllm.config import VllmConfig from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name, ) from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors from .deepseek_v2 import ( DeepseekV2DecoderLayer, get_spec_layer_idx_from_weight_name, ) from .interfaces import SupportsPP from .utils import maybe_prefix class SharedHead(nn.Module): def __init__( self, config: PretrainedConfig, prefix: str, quant_config: QuantizationConfig | None = None, ) -> None: super().__init__() self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "head"), ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.norm(hidden_states) class DeepSeekMultiTokenPredictorLayer(nn.Module): def __init__(self, vllm_config: VllmConfig, prefix: str) -> None: super().__init__() config = vllm_config.speculative_config.draft_model_config.hf_config self.config = config quant_config = vllm_config.quant_config self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False) self.device = current_platform.device_type self.is_v32 = hasattr(config, "index_topk") if self.is_v32: topk_tokens = config.index_topk topk_indices_buffer = torch.empty( vllm_config.scheduler_config.max_num_batched_tokens, topk_tokens, dtype=torch.int32, device=self.device, ) else: topk_indices_buffer = None self.shared_head = SharedHead( config=config, prefix=prefix, quant_config=quant_config ) self.mtp_block = DeepseekV2DecoderLayer( vllm_config, prefix, config=self.config, topk_indices_buffer=topk_indices_buffer, ) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, previous_hidden_states: torch.Tensor, inputs_embeds: torch.Tensor | None = None, spec_step_index: int = 0, ) -> torch.Tensor: assert inputs_embeds is not None # masking inputs at position 0, as not needed by MTP inputs_embeds[positions == 0] = 0 inputs_embeds = self.enorm(inputs_embeds) previous_hidden_states = self.hnorm(previous_hidden_states) hidden_states = self.eh_proj( torch.cat([inputs_embeds, previous_hidden_states], dim=-1) ) hidden_states, residual = self.mtp_block( positions=positions, hidden_states=hidden_states, residual=None ) hidden_states = residual + hidden_states return hidden_states class DeepSeekMultiTokenPredictor(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config self.mtp_start_layer_idx = config.num_hidden_layers self.num_mtp_layers = config.num_nextn_predict_layers # to map the exact layer index from weights self.layers = torch.nn.ModuleDict( { str(idx): DeepSeekMultiTokenPredictorLayer( vllm_config, f"{prefix}.layers.{idx}" ) for idx in range( self.mtp_start_layer_idx, self.mtp_start_layer_idx + self.num_mtp_layers, ) } ) self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.logits_processor = LogitsProcessor(config.vocab_size) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, previous_hidden_states: torch.Tensor, inputs_embeds: torch.Tensor | None = None, spec_step_idx: int = 0, ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) current_step_idx = spec_step_idx % self.num_mtp_layers return self.layers[str(self.mtp_start_layer_idx + current_step_idx)]( input_ids, positions, previous_hidden_states, inputs_embeds, current_step_idx, ) def compute_logits( self, hidden_states: torch.Tensor, spec_step_idx: int = 0, ) -> torch.Tensor: current_step_idx = spec_step_idx % self.num_mtp_layers mtp_layer = self.layers[str(self.mtp_start_layer_idx + current_step_idx)] logits = self.logits_processor( mtp_layer.shared_head.head, mtp_layer.shared_head(hidden_states) ) return logits @support_torch_compile class DeepSeekMTP(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() self.config = vllm_config.model_config.hf_config self.model = DeepSeekMultiTokenPredictor( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, hidden_states: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, spec_step_idx: int = 0, ) -> torch.Tensor: hidden_states = self.model( input_ids, positions, hidden_states, inputs_embeds, spec_step_idx ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, spec_step_idx: int = 0, ) -> torch.Tensor | None: return self.model.compute_logits(hidden_states, spec_step_idx) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ("fused_qkv_a_proj", "q_a_proj", 0), ("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1), ] expert_params_mapping = FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.n_routed_experts, ) params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue spec_layer = get_spec_layer_idx_from_weight_name(self.config, name) if spec_layer is None: continue name = self._rewrite_spec_layer_name(spec_layer, name) for param_name, weight_name, shard_id in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if ("mlp.experts." in name) and name not in params_dict: continue name_mapped = name.replace(weight_name, param_name) # QKV fusion is optional, fall back to normal # weight loading if it's not enabled if ( param_name == "fused_qkv_a_proj" ) and name_mapped not in params_dict: continue else: name = name_mapped # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader( param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id, ) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue # According to DeepSeek-V3 Technical Report, MTP modules # shares embedding layer. We only load the first weights. if ( spec_layer != self.model.mtp_start_layer_idx and ".layers" not in name ): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str: """ Rewrite the weight name to match the format of the original model. Add .mtp_block for modules in transformer layer block for spec layer and rename shared layer weights to be top level. """ spec_layer_weight_names = [ "embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head", ] shared_weight_names = ["embed_tokens"] spec_layer_weight = False shared_weight = False for weight_name in spec_layer_weight_names: if weight_name in name: spec_layer_weight = True if weight_name in shared_weight_names: shared_weight = True break if not spec_layer_weight: # treat rest weights as weights for transformer layer block name = name.replace( f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block." ) elif shared_weight: # treat shared weights as top level weights name = name.replace(f"model.layers.{spec_layer}.", "model.") return name