# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from https://huggingface.co/docs/transformers/perplexity from typing import cast import torch from datasets import load_dataset import tests.ci_envs as ci_envs from tests.models.utils import ( GenerateModelInfo, TokensTextLogprobsPromptLogprobs, get_vllm_extra_kwargs, ) from vllm.logprobs import Logprob # See #24485 PPL_TOL = 0.01 MAX_LENGTH = 1024 @torch.inference_mode def wikitext_ppl_test( hf_runner, vllm_runner, model_info: GenerateModelInfo, max_length=MAX_LENGTH, vllm_extra_kwargs=None, atol=PPL_TOL, ): vllm_extra_kwargs = get_vllm_extra_kwargs(model_info, vllm_extra_kwargs) dataset = load_dataset("wikitext", "wikitext-2-raw-v1", split="test") with vllm_runner( model_info.name, gpu_memory_utilization=0.7, max_model_len=max_length, max_num_seqs=1, **vllm_extra_kwargs, ) as vllm_model: # Use max_num_seqs=1 to avoid OOM, # and avoid batch different requests together. model_config = vllm_model.llm.llm_engine.model_config # Confirm whether vllm is using the correct architecture if model_info.architecture: assert model_info.architecture in model_config.architectures max_length = min(model_config.max_model_len - 1, max_length) stride = max_length tokenizer = vllm_model.llm.get_tokenizer() tokens = tokenizer.encode("\n\n".join(dataset["text"])) n_tokens = len(tokens) chunks = [] for begin_loc in range(0, n_tokens, stride): end_loc = min(begin_loc + max_length, n_tokens) chunks.append(tokens[begin_loc:end_loc]) outputs = vllm_model.generate_greedy_logprobs( prompts=chunks, max_tokens=1, num_logprobs=None, num_prompt_logprobs=0, use_tqdm=False, ) nll_sum = torch.tensor(0.0, dtype=torch.float32, device="cpu") n_tokens = 0 for output in outputs: output = cast(TokensTextLogprobsPromptLogprobs, output) token_datas = cast(list[dict[int, Logprob] | None], output[3]) assert token_datas[0] is None token_log_probs = [] for token_data in token_datas[1:]: assert token_data is not None assert len(token_data) == 1 token_log_prob = list(token_data.values())[0].logprob token_log_probs.append(token_log_prob) neg_log_likelihood = -torch.tensor( token_log_probs, dtype=torch.float32, device="cpu" ).sum() nll_sum += neg_log_likelihood n_tokens += len(token_log_probs) vllm_ppl = float(torch.exp(nll_sum / n_tokens)) vllm_dtype = model_config.dtype head_dtype = model_config.head_dtype # Accelerate ppl test by setting Transformers ppl score to a constant if model_info.hf_ppl is None: with hf_runner( model_info.name, dtype=ci_envs.VLLM_CI_HF_DTYPE or model_info.hf_dtype, ) as hf_model: nll_sum = torch.tensor(0.0, dtype=torch.float32, device="cpu") n_tokens = 0 for chunk in chunks: inputs = hf_model.wrap_device({"input_ids": torch.tensor([chunk])}) input_ids = inputs["input_ids"] outputs = hf_model.model(input_ids, labels=input_ids) neg_log_likelihood = outputs.loss neg_log_likelihood = neg_log_likelihood.to(torch.float32).cpu() num_loss_tokens = len(chunk) - 1 nll_sum += neg_log_likelihood * num_loss_tokens n_tokens += num_loss_tokens hf_ppl = float(torch.exp(nll_sum / n_tokens)) hf_dtype = next(hf_model.model.parameters()).dtype else: hf_ppl = model_info.hf_ppl hf_dtype = "Constant" differ = (vllm_ppl - hf_ppl) / hf_ppl print("Model:", model_info.name) print("VLLM:", f"dtype:{vllm_dtype}", f"head_dtype:{head_dtype}", vllm_ppl) print("Transformers:", hf_dtype, hf_ppl) print("Difference (%):", differ * 100) # PPL the smaller, the better # We are not concerned that the vllm PPL is less than Transformers, # so we only perform one-sided testing. assert differ < atol