# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import torch import torch.nn.functional as F CROSS_ENCODER_MODELS = [ "cross-encoder/ms-marco-MiniLM-L-6-v2", # Bert "BAAI/bge-reranker-v2-m3", # Roberta ] EMBEDDING_MODELS = [ "sentence-transformers/all-MiniLM-L12-v2", ] TEXTS_1 = [ "What is the capital of France?", "What is the capital of Germany?", ] TEXTS_2 = [ "The capital of France is Paris.", "The capital of Germany is Berlin.", ] DTYPE = "half" @pytest.fixture(scope="module", params=CROSS_ENCODER_MODELS) def model_name(request): yield request.param def test_cross_encoder_1_to_1(vllm_runner, hf_runner, model_name): text_pair = [TEXTS_1[0], TEXTS_2[0]] with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model: hf_outputs = hf_model.predict([text_pair]).tolist() with vllm_runner( model_name, runner="pooling", dtype=DTYPE, max_model_len=None ) as vllm_model: vllm_outputs = vllm_model.score(text_pair[0], text_pair[1]) assert len(vllm_outputs) == 1 assert len(hf_outputs) == 1 assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01) def test_cross_encoder_1_to_N(vllm_runner, hf_runner, model_name): text_pairs = [ [TEXTS_1[0], TEXTS_2[0]], [TEXTS_1[0], TEXTS_2[1]], ] with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model: hf_outputs = hf_model.predict(text_pairs).tolist() with vllm_runner( model_name, runner="pooling", dtype=DTYPE, max_model_len=None ) as vllm_model: vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2) assert len(vllm_outputs) == 2 assert len(hf_outputs) == 2 assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01) assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01) def test_cross_encoder_N_to_N(vllm_runner, hf_runner, model_name): text_pairs = [ [TEXTS_1[0], TEXTS_2[0]], [TEXTS_1[1], TEXTS_2[1]], ] with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model: hf_outputs = hf_model.predict(text_pairs).tolist() with vllm_runner( model_name, runner="pooling", dtype=DTYPE, max_model_len=None ) as vllm_model: vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2) assert len(vllm_outputs) == 2 assert len(hf_outputs) == 2 assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01) assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01) @pytest.fixture(scope="module", params=EMBEDDING_MODELS) def emb_model_name(request): yield request.param def test_embedding_1_to_1(vllm_runner, hf_runner, emb_model_name): text_pair = [TEXTS_1[0], TEXTS_2[0]] with hf_runner( emb_model_name, dtype=DTYPE, is_sentence_transformer=True ) as hf_model: hf_embeddings = hf_model.encode(text_pair) hf_outputs = [F.cosine_similarity(*map(torch.tensor, hf_embeddings), dim=0)] with vllm_runner( emb_model_name, runner="pooling", dtype=DTYPE, max_model_len=None ) as vllm_model: vllm_outputs = vllm_model.score(text_pair[0], text_pair[1]) assert len(vllm_outputs) == 1 assert len(hf_outputs) == 1 assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01) def test_embedding_1_to_N(vllm_runner, hf_runner, emb_model_name): text_pairs = [ [TEXTS_1[0], TEXTS_2[0]], [TEXTS_1[0], TEXTS_2[1]], ] with hf_runner( emb_model_name, dtype=DTYPE, is_sentence_transformer=True ) as hf_model: hf_embeddings = [hf_model.encode(text_pair) for text_pair in text_pairs] hf_outputs = [ F.cosine_similarity(*map(torch.tensor, pair), dim=0) for pair in hf_embeddings ] with vllm_runner( emb_model_name, runner="pooling", dtype=DTYPE, max_model_len=None ) as vllm_model: vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2) assert len(vllm_outputs) == 2 assert len(hf_outputs) == 2 assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01) assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01) def test_embedding_N_to_N(vllm_runner, hf_runner, emb_model_name): text_pairs = [ [TEXTS_1[0], TEXTS_2[0]], [TEXTS_1[1], TEXTS_2[1]], ] with hf_runner( emb_model_name, dtype=DTYPE, is_sentence_transformer=True ) as hf_model: hf_embeddings = [hf_model.encode(text_pair) for text_pair in text_pairs] hf_outputs = [ F.cosine_similarity(*map(torch.tensor, pair), dim=0) for pair in hf_embeddings ] with vllm_runner( emb_model_name, runner="pooling", dtype=DTYPE, max_model_len=None ) as vllm_model: vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2) assert len(vllm_outputs) == 2 assert len(hf_outputs) == 2 assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01) assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)