# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest MODEL_NAME = "sentence-transformers/all-MiniLM-L12-v2" max_model_len = 128 input_str = """Immerse yourself in the enchanting chronicle of calculus, a mathematical domain that has radically transformed our comprehension of change and motion. Despite its roots in ancient civilizations, the formal birth of calculus predominantly occurred in the 17th century, primarily under the influential guidance of Sir Isaac Newton and Gottfried Wilhelm Leibniz. The earliest traces of calculus concepts are found in ancient Greek mathematics,most notably in the works of Eudoxus and Archimedes, around 300 BCE. They utilized the 'method of exhaustion'—a technique for computing areas and volumes through the use of finite sums. This methodology laid crucial foundational work for integral calculus. In the 17th century, both Newton and Leibniz independently pioneered calculus, each contributing unique perspectives that would shape this new field.""" def test_smaller_truncation_size( vllm_runner, model_name=MODEL_NAME, input_str=input_str ): truncate_prompt_tokens = 10 with vllm_runner( model_name, runner="pooling", max_model_len=max_model_len ) as vllm_model: vllm_output = vllm_model.llm.embed( input_str, truncate_prompt_tokens=truncate_prompt_tokens ) prompt_tokens = vllm_output[0].prompt_token_ids assert len(prompt_tokens) == truncate_prompt_tokens def test_max_truncation_size(vllm_runner, model_name=MODEL_NAME, input_str=input_str): truncate_prompt_tokens = -1 with vllm_runner( model_name, runner="pooling", max_model_len=max_model_len ) as vllm_model: vllm_output = vllm_model.llm.embed( input_str, truncate_prompt_tokens=truncate_prompt_tokens ) prompt_tokens = vllm_output[0].prompt_token_ids assert len(prompt_tokens) == max_model_len def test_bigger_truncation_size( vllm_runner, model_name=MODEL_NAME, input_str=input_str ): truncate_prompt_tokens = max_model_len + 1 with ( pytest.raises(ValueError), vllm_runner( model_name, runner="pooling", max_model_len=max_model_len ) as vllm_model, ): llm_output = vllm_model.llm.embed( input_str, truncate_prompt_tokens=truncate_prompt_tokens ) assert ( llm_output == f"""truncate_prompt_tokens value ({truncate_prompt_tokens}) is greater than max_model_len ({max_model_len}). Please, select a smaller truncation size.""" )