# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import argparse import contextlib import json import math from dataclasses import asdict, dataclass from datetime import datetime from pathlib import Path from typing import ClassVar, Literal, get_args from typing_extensions import assert_never from vllm.utils.import_utils import PlaceholderModule from .param_sweep import ParameterSweep, ParameterSweepItem from .serve import SweepServeArgs, run_benchmark, run_server from .server import ServerProcess from .sla_sweep import SLASweep, SLASweepItem from .utils import sanitize_filename try: import pandas as pd except ImportError: pd = PlaceholderModule("pandas") def _get_sla_base_path( output_dir: Path, serve_comb: ParameterSweepItem, bench_comb: ParameterSweepItem, ): parts = list[str]() if serve_comb: parts.extend(("SERVE-", serve_comb.as_text(sep="-"))) if bench_comb: parts.extend(("BENCH-", bench_comb.as_text(sep="-"))) return output_dir / sanitize_filename("-".join(parts)) def _get_sla_iter_path( base_path: Path, sla_comb: SLASweepItem, sla_variable: str, sla_value: int | None, ): if sla_value is None: prefix = sla_comb.as_text(sep="-") return base_path / f"SLA--{prefix}.json" return base_path / f"{sla_variable}={sla_value}" def _get_sla_run_path(iter_path: Path, run_number: int | None): if run_number is None: return iter_path / "summary.json" return iter_path / f"run={run_number}.json" def _sla_needs_server( serve_comb: ParameterSweepItem, bench_combs: ParameterSweep, sla_combs: SLASweep, sla_variable: str, output_dir: Path, ): for bench_comb in bench_combs: base_path = _get_sla_base_path(output_dir, serve_comb, bench_comb) for sla_comb in sla_combs: if not _get_sla_iter_path( base_path, sla_comb, sla_variable, sla_value=None, ).exists(): return True return False def run_sla( server: ServerProcess | None, bench_cmd: list[str], *, serve_comb: ParameterSweepItem, bench_comb: ParameterSweepItem, iter_path: Path, num_runs: int, dry_run: bool, ): iter_data = list[dict[str, object]]() for run_number in range(num_runs): run_data = run_benchmark( server, bench_cmd, serve_overrides=serve_comb, bench_overrides=bench_comb, run_number=run_number, output_path=_get_sla_run_path(iter_path, run_number), dry_run=dry_run, ) if run_data is not None: iter_data.append(run_data) if dry_run: return None with _get_sla_run_path(iter_path, run_number=None).open("w") as f: json.dump(iter_data, f, indent=4) return iter_data SLAVariable = Literal["request_rate", "max_concurrency"] def _estimate_sla_value(run_data: dict[str, object], sla_variable: SLAVariable): request_throughput = float(run_data["request_throughput"]) # type: ignore if sla_variable == "request_rate": return request_throughput if sla_variable == "max_concurrency": mean_latency_ms = float(run_data["mean_e2el_ms"]) # type: ignore return request_throughput * mean_latency_ms / 1000 assert_never(sla_variable) def _estimate_sla_bounds( server: ServerProcess | None, bench_cmd: list[str], *, serve_comb: ParameterSweepItem, bench_comb: ParameterSweepItem, sla_comb: SLASweepItem, base_path: Path, num_runs: int, dry_run: bool, sla_variable: SLAVariable, init_value: int, max_value: int, ): sla_data = list[dict[str, object]]() max_passing: int = 0 min_failing: int = 0 val: int = init_value assert val > 0 while True: print(f"Testing {sla_variable}: {val} req/s") iter_data = run_sla( server, bench_cmd, serve_comb=serve_comb, bench_comb=bench_comb | {sla_variable: val}, iter_path=_get_sla_iter_path(base_path, sla_comb, sla_variable, val), num_runs=num_runs, dry_run=dry_run, ) assert iter_data is not None sla_data.extend(iter_data) iter_data_mean = { k: sum(float(run_data[k]) for run_data in iter_data) / len(iter_data) # type: ignore for k in sla_comb } sla_results = [ criterion.print_and_validate(iter_data_mean, k) for k, criterion in sla_comb.items() ] if all(sla_results): print("SLA criteria are met.") max_passing = val val *= 2 else: print("SLA criteria are not met.") min_failing = val break if val >= max_value: break return sla_data, (max_passing, min_failing) def _find_sla_value( server: ServerProcess | None, bench_cmd: list[str], *, serve_comb: ParameterSweepItem, bench_comb: ParameterSweepItem, sla_comb: SLASweepItem, base_path: Path, num_runs: int, dry_run: bool, sla_variable: SLAVariable, min_value: int, max_value: int, ): sla_data = list[dict[str, object]]() left: int = min_value right: int = max_value while True: val = (left + right) // 2 print(f"Testing {sla_variable}: {val} req/s") iter_data = run_sla( server, bench_cmd, serve_comb=serve_comb, bench_comb=bench_comb | {sla_variable: val}, iter_path=_get_sla_iter_path(base_path, sla_comb, sla_variable, val), num_runs=num_runs, dry_run=dry_run, ) assert iter_data is not None sla_data.extend(iter_data) iter_data_mean = { k: sum(float(run_data[k]) for run_data in iter_data) / len(iter_data) # type: ignore for k in sla_comb } sla_results = [ criterion.print_and_validate(iter_data_mean, k) for k, criterion in sla_comb.items() ] if all(sla_results): print("SLA criteria are met.") left = val else: print("SLA criteria are not met.") right = val if right - left <= 1: break return sla_data, left def search_sla( server: ServerProcess | None, bench_cmd: list[str], *, serve_comb: ParameterSweepItem, bench_comb: ParameterSweepItem, sla_comb: SLASweepItem, sla_variable: SLAVariable, sla_inf_value: int = 65536, # The value that represents infinite QPS base_path: Path, num_runs: int, dry_run: bool, ): print("[SLA START]") print(f"SLA criteria: {sla_comb.as_text()}") sla_data_0 = run_sla( server, bench_cmd, serve_comb=serve_comb, bench_comb=bench_comb | {sla_variable: sla_inf_value}, iter_path=_get_sla_iter_path(base_path, sla_comb, sla_variable, sla_inf_value), num_runs=num_runs, dry_run=dry_run, ) if sla_data_0 is None: assert dry_run print("Omitting SLA search.") print("[SLA END]") return None sla_init_value = math.ceil( sum(_estimate_sla_value(item, sla_variable) for item in sla_data_0) / len(sla_data_0) ) print(f"Initial {sla_variable} to search: {sla_init_value} req/s.") sla_data_1, (sla_min, sla_max) = _estimate_sla_bounds( server, bench_cmd, serve_comb=serve_comb, bench_comb=bench_comb, sla_comb=sla_comb, base_path=base_path, num_runs=num_runs, dry_run=dry_run, sla_variable=sla_variable, init_value=sla_init_value, max_value=sla_inf_value, ) print(f"Range of {sla_variable} to search: [{sla_min}, {sla_max}] req/s.") sla_data_2, sla_value = _find_sla_value( server, bench_cmd, serve_comb=serve_comb, bench_comb=bench_comb, sla_comb=sla_comb, base_path=base_path, num_runs=num_runs, dry_run=dry_run, sla_variable=sla_variable, min_value=sla_min, max_value=sla_max, ) sla_data = sla_data_0 + sla_data_1 + sla_data_2 print(f"Maximum {sla_variable} for SLA: {sla_value} req/s.") with _get_sla_iter_path( base_path, sla_comb, sla_variable, sla_value=None, ).open("w") as f: json.dump(sla_data, f, indent=4) print("[SLA END]") return sla_data def run_slas( serve_cmd: list[str], bench_cmd: list[str], after_bench_cmd: list[str], *, show_stdout: bool, serve_params: ParameterSweep, bench_params: ParameterSweep, sla_params: SLASweep, sla_variable: SLAVariable, output_dir: Path, num_runs: int, dry_run: bool, ): if any(bench_comb.has_param(sla_variable) for bench_comb in bench_params): raise ValueError( f"You should not override `{sla_variable}` in `bench_params` in SLA mode, " "since it is supposed to be determined automatically." ) all_data = list[dict[str, object]]() for serve_comb in serve_params: with ( run_server( serve_cmd, after_bench_cmd, show_stdout=show_stdout, serve_overrides=serve_comb, dry_run=dry_run, ) if _sla_needs_server( serve_comb, bench_params, sla_params, sla_variable, output_dir, ) else contextlib.nullcontext() ) as server: for bench_comb in bench_params: for sla_comb in sla_params: base_path = _get_sla_base_path(output_dir, serve_comb, bench_comb) comb_data = search_sla( server, bench_cmd, serve_comb=serve_comb, bench_comb=bench_comb, sla_comb=sla_comb, sla_variable=sla_variable, base_path=base_path, num_runs=num_runs, dry_run=dry_run, ) if comb_data is not None: all_data.extend(comb_data) if dry_run: return None combined_df = pd.DataFrame.from_records(all_data) combined_df.to_csv(output_dir / "summary.csv") return combined_df @dataclass class SweepServeSLAArgs(SweepServeArgs): sla_params: SLASweep sla_variable: SLAVariable parser_name: ClassVar[str] = "serve_sla" parser_help: ClassVar[str] = "Tune a variable to meet SLAs under multiple settings." @classmethod def from_cli_args(cls, args: argparse.Namespace): # NOTE: Don't use super() as `from_cli_args` calls `cls()` base_args = SweepServeArgs.from_cli_args(args) if args.sla_params: sla_params = SLASweep.read_json(args.sla_params) else: sla_params = SLASweep.from_records([]) return cls( **asdict(base_args), sla_params=sla_params, sla_variable=args.sla_variable, ) @classmethod def add_cli_args(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: parser = super().add_cli_args(parser) sla_group = parser.add_argument_group("sla options") sla_group.add_argument( "--sla-params", type=str, required=True, help="Path to JSON file containing a list of SLA constraints to satisfy. " 'Each constraint is expressed in `{"": ""}` format, ' 'e.g.: `{"p99_e2el_ms": "<=500"}` means that ' "the E2E latency should be less than 500ms 99%% of the time. " "Setting this option runs this script in SLA mode, which searches for " "the maximum `sla_variable` that satisfies the constraints for " "each combination of `serve_params`, `bench_params`, and `sla_params`.", ) sla_group.add_argument( "--sla-variable", type=str, choices=get_args(SLAVariable), default="request_rate", help="Whether to tune request rate or maximum concurrency to satisfy " "the SLA constraints.", ) return parser def run_main(args: SweepServeSLAArgs): timestamp = args.resume or datetime.now().strftime("%Y%m%d_%H%M%S") output_dir = args.output_dir / timestamp if args.resume and not output_dir.exists(): raise ValueError(f"Cannot resume from non-existent directory ({output_dir})") try: return run_slas( serve_cmd=args.serve_cmd, bench_cmd=args.bench_cmd, after_bench_cmd=args.after_bench_cmd, show_stdout=args.show_stdout, serve_params=args.serve_params, bench_params=args.bench_params, sla_params=args.sla_params, sla_variable=args.sla_variable, output_dir=output_dir, num_runs=args.num_runs, dry_run=args.dry_run, ) except BaseException as exc: raise RuntimeError( f"The script was terminated early. Use `--resume {timestamp}` " f"to continue the script from its last checkpoint." ) from exc def main(args: argparse.Namespace): run_main(SweepServeSLAArgs.from_cli_args(args)) if __name__ == "__main__": parser = argparse.ArgumentParser(description=SweepServeSLAArgs.parser_help) SweepServeSLAArgs.add_cli_args(parser) main(parser.parse_args())