# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/vllm-project/vllm/blob/v0.7.3/vllm/model_executor/models/deepseek_mtp.py # Copyright 2025 Xiaomi Corporation. # Copyright 2023 The vLLM team. # Copyright 2024 DeepSeek-AI team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only MiMo-MTP model.""" from collections.abc import Iterable import torch import torch.nn as nn from transformers import PretrainedConfig from vllm.config import CacheConfig, ModelConfig, VllmConfig from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.models.qwen2 import Qwen2DecoderLayer from vllm.sequence import IntermediateTensors from .utils import maybe_prefix class MiMoMultiTokenPredictorLayer(nn.Module): def __init__( self, config: PretrainedConfig, prefix: str, model_config: ModelConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, ) -> None: super().__init__() self.token_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.hidden_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.input_proj = nn.Linear( config.hidden_size * 2, config.hidden_size, bias=False ) self.mtp_block = Qwen2DecoderLayer( config=config, cache_config=cache_config, quant_config=quant_config, prefix=prefix, ) self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, inputs_embeds: torch.Tensor, positions: torch.Tensor, previous_hidden_states: torch.Tensor, spec_step_index: int = 0, ) -> torch.Tensor: assert inputs_embeds is not None # masking inputs at position 0, as not needed by MTP inputs_embeds[positions == 0] = 0 inputs_embeds = self.token_layernorm(inputs_embeds) previous_hidden_states = self.hidden_layernorm(previous_hidden_states) hidden_states = self.input_proj( torch.cat([previous_hidden_states, inputs_embeds], dim=-1) ) hidden_states, residual = self.mtp_block( positions=positions, hidden_states=hidden_states, residual=None ) hidden_states = residual + hidden_states return self.final_layernorm(hidden_states) class MiMoMultiTokenPredictor(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config self.mtp_start_layer_idx = config.num_hidden_layers self.num_mtp_layers = config.num_nextn_predict_layers self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.mtp_layers = torch.nn.ModuleDict( { str(idx): MiMoMultiTokenPredictorLayer( config, f"{prefix}.layers.{idx}", model_config=vllm_config.model_config, cache_config=vllm_config.cache_config, quant_config=vllm_config.quant_config, ) for idx in range( self.mtp_start_layer_idx, self.mtp_start_layer_idx + self.num_mtp_layers, ) } ) self.logits_processor = LogitsProcessor(config.vocab_size) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, previous_hidden_states: torch.Tensor, inputs_embeds: torch.Tensor | None = None, spec_step_idx: int = 0, ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) return self.mtp_layers[str(self.mtp_start_layer_idx + spec_step_idx)]( inputs_embeds, positions, previous_hidden_states, spec_step_idx, ) def compute_logits( self, hidden_states: torch.Tensor, lm_head: ParallelLMHead, spec_step_idx: int = 0, ) -> torch.Tensor: self.mtp_layers[str(self.mtp_start_layer_idx + spec_step_idx)] logits = self.logits_processor(lm_head, hidden_states) return logits class MiMoMTP(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() self.config = vllm_config.model_config.hf_config self.model = MiMoMultiTokenPredictor( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) self.lm_head = ParallelLMHead( self.config.vocab_size, self.config.hidden_size, prefix=maybe_prefix(prefix, "lm_head"), ) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, hidden_states: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, spec_step_idx: int = 0, ) -> torch.Tensor: assert spec_step_idx == 0, "mimo_mtp only support predict one token now" hidden_states = self.model( input_ids, positions, hidden_states, inputs_embeds, spec_step_idx ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, spec_step_idx: int = 0, ) -> torch.Tensor | None: return self.model.compute_logits(hidden_states, self.lm_head, spec_step_idx) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue name = self.map_model_name_to_mtp_param_name(name) for param_name, weight_name, shard_id in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue if "mtp_layers" not in name: break # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if ("mlp.experts." in name) and name not in params_dict: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if "mtp_layers" not in name and ( "embed_tokens" not in name and "lm_head" not in name ): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params def map_model_name_to_mtp_param_name(self, name: str) -> str: import regex as re # append mtp_start_layer_idx pattern = r"(model\.mtp_layers\.)(\d+)(\.)" match = re.match(pattern, name) if match: original_num = int(match.group(2)) new_num = original_num + self.config.num_hidden_layers name = name.replace(match.group(), f"{match.group(1)}{new_num}.") # check for early turn name_without_prefix = [ "token_layernorm", "hidden_layernorm", "input_proj", "final_layernorm", ] for sub_name in name_without_prefix: if sub_name in name: return name # add mtp_block pattern = r"(model\.mtp_layers\.\d+\.)" match = re.match(pattern, name) if match: name = name.replace(match.group(), match.group() + "mtp_block.") return name def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str: """ Rewrite the weight name to match the format of the original model. Add .mtp_block for modules in transformer layer block for spec layer """ spec_layer_weight_names = [ "embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head", ] spec_layer_weight = False for weight_name in spec_layer_weight_names: if weight_name in name: spec_layer_weight = True break if not spec_layer_weight: # treat rest weights as weights for transformer layer block name = name.replace( f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block." ) return name