# SPDX-License-Identifier: Apache-2.0 from __future__ import annotations import json import re from enum import Enum from typing import Any import jsonschema import pytest from pydantic import BaseModel from vllm.entrypoints.llm import LLM from vllm.outputs import RequestOutput from vllm.sampling_params import GuidedDecodingParams, SamplingParams PARAMS_MODELS_BACKENDS_TOKENIZER_MODE = [ ("mistralai/Ministral-8B-Instruct-2410", "xgrammar:disable-any-whitespace", "auto"), ("mistralai/Ministral-8B-Instruct-2410", "guidance:disable-any-whitespace", "auto"), ("mistralai/Ministral-8B-Instruct-2410", "xgrammar:disable-any-whitespace", "mistral"), ("Qwen/Qwen2.5-1.5B-Instruct", "xgrammar:disable-any-whitespace", "auto"), #FIXME: This test is flaky on CI thus disabled #("Qwen/Qwen2.5-1.5B-Instruct", "guidance:disable-any-whitespace", "auto"), ] PARAMS_MODELS_TOKENIZER_MODE = [ ("mistralai/Ministral-8B-Instruct-2410", "auto"), ("Qwen/Qwen2.5-1.5B-Instruct", "auto"), ] class CarType(str, Enum): sedan = "sedan" suv = "SUV" truck = "Truck" coupe = "Coupe" class CarDescription(BaseModel): brand: str model: str car_type: CarType @pytest.mark.skip_global_cleanup @pytest.mark.parametrize("model_name, guided_decoding_backend, tokenizer_mode", PARAMS_MODELS_BACKENDS_TOKENIZER_MODE) def test_structured_output( monkeypatch: pytest.MonkeyPatch, sample_json_schema: dict[str, Any], unsupported_json_schema: dict[str, Any], sample_sql_ebnf: str, sample_sql_lark: str, sample_regex: str, sample_guided_choice: str, guided_decoding_backend: str, tokenizer_mode: str, model_name: str, ): monkeypatch.setenv("VLLM_USE_V1", "1") # Use a single LLM instance for several scenarios to # speed up the test suite. llm = LLM(model=model_name, enforce_eager=True, max_model_len=1024, guided_decoding_backend=guided_decoding_backend, tokenizer_mode=tokenizer_mode) # # Test 1: Generate JSON output based on a provided schema # sampling_params = SamplingParams( temperature=1.0, max_tokens=1000, guided_decoding=GuidedDecodingParams(json=sample_json_schema)) outputs = llm.generate(prompts=[ f"Give an example JSON for an employee profile " f"that fits this schema: {sample_json_schema}" ] * 2, sampling_params=sampling_params, use_tqdm=True) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) prompt = output.prompt generated_text = output.outputs[0].text assert generated_text is not None if 'disable-any-whitespace' in guided_decoding_backend: assert "\n" not in generated_text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") output_json = json.loads(generated_text) jsonschema.validate(instance=output_json, schema=sample_json_schema) # # Test 2: Generate JSON object without a schema # sampling_params = SamplingParams( temperature=1.0, max_tokens=100, n=2, guided_decoding=GuidedDecodingParams(json_object=True)) outputs = llm.generate( prompts=("Generate a JSON object with curly braces for a person with " "name and age fields for John Smith who is 31 years old."), sampling_params=sampling_params, use_tqdm=True) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) for i in range(2): generated_text = output.outputs[i].text print(generated_text) assert generated_text is not None # Parse to verify it is a valid JSON object parsed_json = json.loads(generated_text) assert isinstance(parsed_json, dict) # # Test 3: test a jsonschema incompatible with xgrammar # sampling_params = SamplingParams( temperature=1.0, max_tokens=1000, guided_decoding=GuidedDecodingParams(json=unsupported_json_schema)) if guided_decoding_backend.startswith("xgrammar"): with pytest.raises(ValueError, match="The provided JSON schema contains features " "not supported by xgrammar."): llm.generate(prompts=[ f"Give an example JSON for an employee profile " f"that fits this schema: {unsupported_json_schema}" ] * 2, sampling_params=sampling_params, use_tqdm=True) else: outputs = llm.generate( prompts=("Give an example JSON object for a grade " "that fits this schema: " f"{unsupported_json_schema}"), sampling_params=sampling_params, use_tqdm=True) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) generated_text = output.outputs[0].text assert generated_text is not None print(generated_text) # Parse to verify it is valid JSON parsed_json = json.loads(generated_text) assert isinstance(parsed_json, dict) # # Test 4: Generate SQL statement using EBNF grammar # sampling_params = SamplingParams( temperature=0.8, top_p=0.95, max_tokens=1000, guided_decoding=GuidedDecodingParams(grammar=sample_sql_ebnf)) outputs = llm.generate( prompts=("Generate a sql statement that selects col_1 from " "table_1 where it is equal to 1"), sampling_params=sampling_params, use_tqdm=True, ) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) prompt = output.prompt generated_text = output.outputs[0].text assert generated_text is not None # remove spaces for comparison b/c we removed them in the grammar ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace( " ", "") assert generated_text.strip() == ground_truth print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") # # Test 5: Generate SQL statement using Lark grammar # sampling_params = SamplingParams( temperature=0.8, top_p=0.95, max_tokens=1000, guided_decoding=GuidedDecodingParams(grammar=sample_sql_lark)) outputs = llm.generate( prompts=("Generate a sql statement that selects col_1 from " "table_1 where it is equal to 1"), sampling_params=sampling_params, use_tqdm=True, ) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) prompt = output.prompt generated_text = output.outputs[0].text assert generated_text is not None # use Lark to parse the output, and make sure it's a valid parse tree from lark import Lark parser = Lark(sample_sql_lark) parser.parse(generated_text) # remove spaces for comparison b/c we removed them in the grammar ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace( " ", "") assert generated_text.strip() == ground_truth print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") # # Test 6: Test invalid grammar input # sampling_params = SamplingParams( temperature=0.8, top_p=0.95, max_tokens=1000, guided_decoding=GuidedDecodingParams(grammar="not a grammar")) with pytest.raises(ValueError, match="Failed to convert the grammar "): llm.generate( prompts=("Generate a sql statement that selects col_1 from " "table_1 where it is equal to 1"), sampling_params=sampling_params, use_tqdm=True, ) # # Test 7: Generate text based on a regex pattern # sampling_params = SamplingParams( temperature=0.8, top_p=0.95, guided_decoding=GuidedDecodingParams(regex=sample_regex)) outputs = llm.generate( prompts=[ f"Give an example IPv4 address with this regex: {sample_regex}" ] * 2, sampling_params=sampling_params, use_tqdm=True, ) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) prompt = output.prompt generated_text = output.outputs[0].text print(generated_text) assert generated_text is not None assert re.fullmatch(sample_regex, generated_text) is not None print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") # # Test 8: Generate text based on a choices # sampling_params = SamplingParams( temperature=0.8, top_p=0.95, guided_decoding=GuidedDecodingParams(choice=sample_guided_choice)) outputs = llm.generate( prompts="The best language for type-safe systems programming is ", sampling_params=sampling_params, use_tqdm=True) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) prompt = output.prompt generated_text = output.outputs[0].text print(generated_text) assert generated_text is not None assert generated_text in sample_guided_choice print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") # # Test 9: Generate structured output using a Pydantic model with an enum # json_schema = CarDescription.model_json_schema() sampling_params = SamplingParams( temperature=1.0, max_tokens=1000, guided_decoding=GuidedDecodingParams(json=json_schema)) outputs = llm.generate( prompts="Generate a JSON with the brand, model and car_type of" "the most iconic car from the 90's", sampling_params=sampling_params, use_tqdm=True) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) prompt = output.prompt generated_text = output.outputs[0].text assert generated_text is not None print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") output_json = json.loads(generated_text) jsonschema.validate(instance=output_json, schema=json_schema) # # Test 10: Generate structured with minLength and maxLength # min_length = 50 max_length = 50 json_schema = { "type": "object", "properties": { "description": { "type": "string", "maxLength": max_length, "minLength": min_length } }, "required": ["description"] } sampling_params = SamplingParams( temperature=1.0, max_tokens=1000, guided_decoding=GuidedDecodingParams(json=json_schema)) outputs = llm.generate( prompts="Generate a description of a frog using 50 characters.", sampling_params=sampling_params, use_tqdm=True) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) prompt = output.prompt generated_text = output.outputs[0].text assert generated_text is not None print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") output_json = json.loads(generated_text) jsonschema.validate(instance=output_json, schema=json_schema) @pytest.mark.skip_global_cleanup @pytest.mark.parametrize("model_name, tokenizer_mode", PARAMS_MODELS_TOKENIZER_MODE) def test_structured_output_auto_mode( monkeypatch: pytest.MonkeyPatch, unsupported_json_schema: dict[str, Any], model_name: str, tokenizer_mode: str, ): monkeypatch.setenv("VLLM_USE_V1", "1") llm = LLM(model=model_name, max_model_len=1024, guided_decoding_backend="auto", tokenizer_mode=tokenizer_mode) sampling_params = SamplingParams( temperature=1.0, max_tokens=1000, guided_decoding=GuidedDecodingParams(json=unsupported_json_schema)) prompts = ("Give an example JSON object for a grade " "that fits this schema: " f"{unsupported_json_schema}") # This would fail with the default of "xgrammar", but in "auto" # we will handle fallback automatically. outputs = llm.generate(prompts=prompts, sampling_params=sampling_params, use_tqdm=True) # Make sure `auto` backend handling doesn't mess up sampling_params # and that we can reuse it without error. outputs.extend( llm.generate(prompts=prompts, sampling_params=sampling_params, use_tqdm=True)) assert outputs is not None for output in outputs: assert output is not None assert isinstance(output, RequestOutput) generated_text = output.outputs[0].text assert generated_text is not None print(generated_text) # Parse to verify it is valid JSON parsed_json = json.loads(generated_text) assert isinstance(parsed_json, dict)