# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Copyright 2023 The vLLM team. # Adapted from # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """vLLM distributed state. It takes over the control of the distributed environment from PyTorch. The typical workflow is: - call `init_distributed_environment` to initialize the distributed environment. - call `initialize_model_parallel` or `ensure_model_parallel_initialized` to initialize the model parallel groups. - any code dealing with the distributed stuff - call `destroy_model_parallel` to destroy the model parallel groups. - call `destroy_distributed_environment` to destroy the distributed environment. If you only need to use the distributed environment without model/pipeline parallelism, you can skip the model parallel initialization and destruction steps. """ import contextlib import gc import pickle import weakref from collections import namedtuple from collections.abc import Callable from contextlib import contextmanager, nullcontext from dataclasses import dataclass from datetime import timedelta from multiprocessing import shared_memory from typing import Any, Optional from unittest.mock import patch import torch import torch.distributed import torch.distributed._functional_collectives as funcol import torch.distributed._symmetric_memory from torch.distributed import Backend, ProcessGroup import vllm.envs as envs from vllm.distributed.device_communicators.base_device_communicator import ( DeviceCommunicatorBase, ) from vllm.distributed.utils import StatelessProcessGroup from vllm.logger import init_logger from vllm.utils.import_utils import resolve_obj_by_qualname from vllm.utils.network_utils import get_distributed_init_method from vllm.utils.system_utils import suppress_stdout from vllm.utils.torch_utils import ( direct_register_custom_op, supports_custom_op, ) @dataclass class GraphCaptureContext: stream: torch.cuda.Stream TensorMetadata = namedtuple("TensorMetadata", ["device", "dtype", "size"]) def _split_tensor_dict( tensor_dict: dict[str, torch.Tensor | Any], ) -> tuple[list[tuple[str, Any]], list[torch.Tensor]]: """Split the tensor dictionary into two parts: 1. A list of (key, value) pairs. If the value is a tensor, it is replaced by its metadata. 2. A list of tensors. """ metadata_list: list[tuple[str, Any]] = [] tensor_list: list[torch.Tensor] = [] for key, value in tensor_dict.items(): if isinstance(value, torch.Tensor): # Note: we cannot use `value.device` here, # because it contains not only the device type but also the device # index (e.g. "cuda:0"). We only need the device type. # receiving side will set the device index. device = value.device.type metadata_list.append( (key, TensorMetadata(device, value.dtype, value.size())) ) tensor_list.append(value) else: metadata_list.append((key, value)) return metadata_list, tensor_list _group_name_counter: dict[str, int] = {} def _get_unique_name(name: str) -> str: """Get a unique name for the group. Example: _get_unique_name("tp") -> "tp:0" _get_unique_name("tp") -> "tp:1" """ if name not in _group_name_counter: _group_name_counter[name] = 0 newname = f"{name}:{_group_name_counter[name]}" _group_name_counter[name] += 1 return newname _groups: dict[str, Callable[[], Optional["GroupCoordinator"]]] = {} def _register_group(group: "GroupCoordinator") -> None: _groups[group.unique_name] = weakref.ref(group) def all_reduce(tensor: torch.Tensor, group_name: str) -> torch.Tensor: assert group_name in _groups, f"Group {group_name} is not found." group = _groups[group_name]() if group is None: raise ValueError(f"Group {group_name} is destroyed.") return group._all_reduce_out_place(tensor) def all_reduce_fake(tensor: torch.Tensor, group_name: str) -> torch.Tensor: return torch.empty_like(tensor) def reduce_scatter( tensor: torch.Tensor, dim: int, world_size: int, group_name: str ) -> torch.Tensor: assert group_name in _groups, f"Group {group_name} is not found." group = _groups[group_name]() if group is None: raise ValueError(f"Group {group_name} is destroyed.") return group._reduce_scatter_out_place(tensor, dim) def reduce_scatter_fake( tensor: torch.Tensor, dim: int, world_size: int, group_name: str ) -> torch.Tensor: new_shape = list(tensor.shape) new_shape[dim] = tensor.shape[dim] // world_size return torch.empty(new_shape, dtype=tensor.dtype, device=tensor.device) def all_gather( tensor: torch.Tensor, dim: int, world_size: int, group_name: str ) -> torch.Tensor: assert group_name in _groups, f"Group {group_name} is not found." group = _groups[group_name]() if group is None: raise ValueError(f"Group {group_name} is destroyed.") return group._all_gather_out_place(tensor, dim) def all_gather_fake( tensor: torch.Tensor, dim: int, world_size: int, group_name: str ) -> torch.Tensor: new_shape = list(tensor.shape) new_shape[dim] = tensor.shape[dim] * world_size return torch.empty(new_shape, dtype=tensor.dtype, device=tensor.device) def patched_fused_scaled_matmul_reduce_scatter_fake( A: torch.Tensor, B: torch.Tensor, A_scale: torch.Tensor, B_scale: torch.Tensor, reduce_op: str, orig_scatter_dim: int, scatter_dim_after_maybe_reshape: int, group_name: str, output_shape: list[int], bias: torch.Tensor | None = None, result_scale: torch.Tensor | None = None, out_dtype: torch.dtype | None = None, use_fast_accum: bool = False, ) -> torch.Tensor: # Copied from # https://github.com/pytorch/pytorch/blob/50c338c2da905062449e4d9ac807832d1b5cd90e/torch/distributed/_symmetric_memory/__init__.py#L1189 if A_scale.numel() > 1: if A_scale.shape[:-1] != A.shape[:-1]: raise ValueError( "For row-wise scaling, the leading dims of A_scale " "must match the leading dims of A " f"(A shape: {A.shape}, A_scale shape: {A_scale.shape})" ) A_scale = A_scale.flatten(0, -2).contiguous() elif A_scale.numel() != 1: raise ValueError( "Invalid A_scale shape " f"(A shape: {A.shape}, A_scale shape: {A_scale.shape})" ) C = torch._scaled_mm( A.flatten(0, -2).contiguous(), B, A_scale, B_scale, bias, result_scale, out_dtype, use_fast_accum, ) C = C.view(*output_shape[:-1], B.shape[1]) res = funcol.reduce_scatter_tensor( C, reduce_op, orig_scatter_dim, # need original scatter dim for 3D+ output tensor here group_name, ) res = funcol.wait_tensor(res) return res def patched_fused_scaled_matmul_reduce_scatter( A: torch.Tensor, B: torch.Tensor, A_scale: torch.Tensor, B_scale: torch.Tensor, reduce_op: str, orig_scatter_dim: int, scatter_dim_after_maybe_reshape: int, group_name: str, output_shape: list[int], bias: torch.Tensor | None = None, result_scale: torch.Tensor | None = None, out_dtype: torch.dtype | None = None, use_fast_accum: bool = False, ) -> torch.Tensor: return torch.ops.symm_mem.fused_scaled_matmul_reduce_scatter( A, B, A_scale, B_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, use_fast_accum, ) if supports_custom_op(): direct_register_custom_op( op_name="all_reduce", op_func=all_reduce, fake_impl=all_reduce_fake, ) direct_register_custom_op( op_name="reduce_scatter", op_func=reduce_scatter, fake_impl=reduce_scatter_fake, ) direct_register_custom_op( op_name="all_gather", op_func=all_gather, fake_impl=all_gather_fake, ) # TODO: Remove this once the pytorch fix # (https://github.com/pytorch/pytorch/pull/165086) gets released, # in either 2.9.1 or 2.10 direct_register_custom_op( op_name="patched_fused_scaled_matmul_reduce_scatter", op_func=patched_fused_scaled_matmul_reduce_scatter, fake_impl=patched_fused_scaled_matmul_reduce_scatter_fake, ) class GroupCoordinator: """ PyTorch ProcessGroup wrapper for a group of processes. PyTorch ProcessGroup is bound to one specific communication backend, e.g. NCCL, Gloo, MPI, etc. GroupCoordinator takes charge of all the communication operations among the processes in the group. It manages both CPU and device communication. """ # available attributes: rank: int # global rank ranks: list[int] # global ranks in the group world_size: int # size of the group # difference between `local_rank` and `rank_in_group`: # if we have a group of size 4 across two nodes: # Process | Node | Rank | Local Rank | Rank in Group # 0 | 0 | 0 | 0 | 0 # 1 | 0 | 1 | 1 | 1 # 2 | 1 | 2 | 0 | 2 # 3 | 1 | 3 | 1 | 3 local_rank: int # local rank used to assign devices rank_in_group: int # rank inside the group cpu_group: ProcessGroup # group for CPU communication device_group: ProcessGroup # group for device communication # device communicator (if use_device_communicator=True) device_communicator: DeviceCommunicatorBase | None mq_broadcaster: Any | None # shared memory broadcaster def __init__( self, group_ranks: list[list[int]], local_rank: int, torch_distributed_backend: str | Backend, use_device_communicator: bool, # whether to use device communicator use_message_queue_broadcaster: bool = False, group_name: str | None = None, ): group_name = group_name or "anonymous" self.unique_name = _get_unique_name(group_name) _register_group(self) self.rank = torch.distributed.get_rank() self.local_rank = local_rank self_device_group = None self_cpu_group = None for ranks in group_ranks: device_group = torch.distributed.new_group( ranks, backend=torch_distributed_backend ) # a group with `gloo` backend, to allow direct coordination between # processes through the CPU. with suppress_stdout(): cpu_group = torch.distributed.new_group(ranks, backend="gloo") if self.rank in ranks: self.ranks = ranks self.world_size = len(ranks) self.rank_in_group = ranks.index(self.rank) self_device_group = device_group self_cpu_group = cpu_group assert self_cpu_group is not None assert self_device_group is not None self.cpu_group = self_cpu_group self.device_group = self_device_group from vllm.platforms import current_platform if current_platform.is_cuda_alike(): self.device = torch.device(f"cuda:{local_rank}") elif current_platform.is_xpu(): self.device = torch.device(f"xpu:{local_rank}") elif current_platform.is_out_of_tree(): self.device = torch.device(f"{current_platform.device_name}:{local_rank}") else: self.device = torch.device("cpu") self.use_device_communicator = use_device_communicator self.device_communicator = None if use_device_communicator and self.world_size > 1: device_comm_cls = resolve_obj_by_qualname( current_platform.get_device_communicator_cls() ) self.device_communicator = device_comm_cls( cpu_group=self.cpu_group, device=self.device, device_group=self.device_group, unique_name=self.unique_name, ) from vllm.distributed.device_communicators.shm_broadcast import MessageQueue self.mq_broadcaster: MessageQueue | None = None if use_message_queue_broadcaster and self.world_size > 1: self.mq_broadcaster = MessageQueue.create_from_process_group( self.cpu_group, 1 << 22, 6 ) from vllm.platforms import current_platform self.use_custom_op_call = ( current_platform.is_cuda_alike() or current_platform.is_tpu() ) self.use_cpu_custom_send_recv = current_platform.is_cpu() and hasattr( torch.ops._C, "init_shm_manager" ) def create_mq_broadcaster( self, writer_rank=0, external_writer_handle=None, blocking=True ): from vllm.distributed.device_communicators.shm_broadcast import MessageQueue return MessageQueue.create_from_process_group( self.cpu_group, 1 << 22, 6, writer_rank=writer_rank, external_writer_handle=external_writer_handle, blocking=blocking, ) def create_single_reader_mq_broadcasters( self, reader_rank_in_group=0, blocking=False ): from vllm.distributed.device_communicators.shm_broadcast import MessageQueue return MessageQueue.create_from_process_group_single_reader( self.cpu_group, 1 << 22, 6, reader_rank=self.ranks[reader_rank_in_group], blocking=blocking, ) @property def first_rank(self): """Return the global rank of the first process in the group""" return self.ranks[0] @property def last_rank(self): """Return the global rank of the last process in the group""" return self.ranks[-1] @property def is_first_rank(self): """Return whether the caller is the first process in the group""" return self.rank == self.first_rank @property def is_last_rank(self): """Return whether the caller is the last process in the group""" return self.rank == self.last_rank @property def next_rank(self): """Return the global rank of the process that follows the caller""" rank_in_group = self.rank_in_group world_size = self.world_size return self.ranks[(rank_in_group + 1) % world_size] @property def prev_rank(self): """Return the global rank of the process that precedes the caller""" rank_in_group = self.rank_in_group world_size = self.world_size return self.ranks[(rank_in_group - 1) % world_size] @contextmanager def graph_capture(self, graph_capture_context: GraphCaptureContext | None = None): if graph_capture_context is None: stream = torch.cuda.Stream() graph_capture_context = GraphCaptureContext(stream) else: stream = graph_capture_context.stream # only cuda uses this function, # so we don't abstract it into the base class maybe_ca_context = nullcontext() from vllm.distributed.device_communicators.cuda_communicator import ( CudaCommunicator, ) if self.device_communicator is not None: assert isinstance(self.device_communicator, CudaCommunicator) ca_comm = self.device_communicator.ca_comm if ca_comm is not None: maybe_ca_context = ca_comm.capture() # type: ignore # ensure all initialization operations complete before attempting to # capture the graph on another stream curr_stream = torch.cuda.current_stream() if curr_stream != stream: stream.wait_stream(curr_stream) with torch.cuda.stream(stream), maybe_ca_context: yield graph_capture_context def all_reduce(self, input_: torch.Tensor) -> torch.Tensor: """ User-facing all-reduce function before we actually call the all-reduce operation. We need this because Dynamo does not support passing an arbitrary object (`self` in this case) to a custom op. We need to pass the group name as a string, and then look up the group coordinator from the group name, dispatch the all-reduce operation to the group coordinator. In addition, PyTorch custom ops do not support mutation or returning a new tensor in the same op. So we always make the all-reduce operation out-of-place. """ # Bypass the function if we are using only 1 GPU. if self.world_size == 1: return input_ if self.use_custom_op_call: return torch.ops.vllm.all_reduce(input_, group_name=self.unique_name) else: return self._all_reduce_out_place(input_) def _all_reduce_out_place(self, input_: torch.Tensor) -> torch.Tensor: if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.all_reduce(input_) def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor: world_size = self.world_size # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ assert -input_.dim() <= dim < input_.dim(), ( f"Invalid dim ({dim}) for input tensor with shape {input_.size()}" ) if self.use_custom_op_call: return torch.ops.vllm.all_gather( input_, dim, world_size, group_name=self.unique_name ) else: return self._all_gather_out_place(input_, dim) def _all_gather_out_place(self, input_: torch.Tensor, dim: int) -> torch.Tensor: if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.all_gather(input_, dim) def all_gatherv( self, input_: torch.Tensor | list[torch.Tensor], dim: int = 0, sizes: list[int] | None = None, ): if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.all_gatherv(input_, dim, sizes) def reduce_scatter(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor: world_size = self.world_size # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ assert -input_.dim() <= dim < input_.dim(), ( f"Invalid dim ({dim}) for input tensor with shape {input_.size()}" ) if self.use_custom_op_call: return torch.ops.vllm.reduce_scatter( input_, dim, world_size, group_name=self.unique_name ) else: return self._reduce_scatter_out_place(input_, dim) def reduce_scatterv( self, input_: torch.Tensor, dim: int = -1, sizes: list[int] | None = None ) -> torch.Tensor: if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.reduce_scatterv(input_, dim, sizes) def _reduce_scatter_out_place(self, input_: torch.Tensor, dim: int) -> torch.Tensor: if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.reduce_scatter(input_, dim) def gather( self, input_: torch.Tensor, dst: int = 0, dim: int = -1 ) -> torch.Tensor | None: """ NOTE: We assume that the input tensor is on the same device across all the ranks. NOTE: `dst` is the local rank of the destination rank. """ world_size = self.world_size # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.gather(input_, dst, dim) def broadcast(self, input_: torch.Tensor, src: int = 0): """Broadcast the input tensor. NOTE: `src` is the local rank of the source rank. """ assert src < self.world_size, f"Invalid src rank ({src})" # Bypass the function if we are using only 1 GPU. if self.world_size == 1: return input_ # Broadcast. torch.distributed.broadcast( input_, src=self.ranks[src], group=self.device_group ) return input_ def broadcast_object(self, obj: Any | None = None, src: int = 0): """Broadcast the input object. NOTE: `src` is the local rank of the source rank. """ assert src < self.world_size, f"Invalid src rank ({src})" # Bypass the function if we are using only 1 GPU. if self.world_size == 1: return obj if self.mq_broadcaster is not None: assert src == 0, "Message queue broadcaster only supports src=0" return self.mq_broadcaster.broadcast_object(obj) if self.rank_in_group == src: torch.distributed.broadcast_object_list( [obj], src=self.ranks[src], group=self.cpu_group ) return obj else: recv = [None] torch.distributed.broadcast_object_list( recv, src=self.ranks[src], group=self.cpu_group ) return recv[0] def broadcast_object_list( self, obj_list: list[Any], src: int = 0, group: ProcessGroup | None = None ): """Broadcast the input object list. NOTE: `src` is the local rank of the source rank. """ assert src < self.world_size, f"Invalid src rank ({src})" # Bypass the function if we are using only 1 GPU. if self.world_size == 1: return obj_list # Broadcast. torch.distributed.broadcast_object_list( obj_list, src=self.ranks[src], group=self.device_group ) return obj_list def send_object(self, obj: Any, dst: int) -> None: """Send the input object list to the destination rank.""" """NOTE: `dst` is the local rank of the destination rank.""" assert dst < self.world_size, f"Invalid dst rank ({dst})" assert dst != self.rank_in_group, ( "Invalid destination rank. Destination rank is the same " "as the current rank." ) # Serialize object to tensor and get the size as well object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) size_tensor = torch.tensor( [object_tensor.numel()], dtype=torch.long, device="cpu" ) # Send object size torch.distributed.send(size_tensor, dst=self.ranks[dst], group=self.cpu_group) # Send object torch.distributed.send(object_tensor, dst=self.ranks[dst], group=self.cpu_group) return None def recv_object(self, src: int) -> Any: """Receive the input object list from the source rank.""" """NOTE: `src` is the local rank of the source rank.""" assert src < self.world_size, f"Invalid src rank ({src})" assert src != self.rank_in_group, ( "Invalid source rank. Source rank is the same as the current rank." ) size_tensor = torch.empty(1, dtype=torch.long, device="cpu") # Receive object size rank_size = torch.distributed.recv( size_tensor, src=self.ranks[src], group=self.cpu_group ) # Tensor to receive serialized objects into. object_tensor = torch.empty( # type: ignore[call-overload] size_tensor.item(), # type: ignore[arg-type] dtype=torch.uint8, device="cpu", ) rank_object = torch.distributed.recv( object_tensor, src=self.ranks[src], group=self.cpu_group ) assert rank_object == rank_size, ( "Received object sender rank does not match the size sender rank." ) obj = pickle.loads(object_tensor.numpy().tobytes()) return obj def broadcast_tensor_dict( self, tensor_dict: dict[str, torch.Tensor | Any] | None = None, src: int = 0, group: ProcessGroup | None = None, metadata_group: ProcessGroup | None = None, ) -> dict[str, torch.Tensor | Any] | None: """Broadcast the input tensor dictionary. NOTE: `src` is the local rank of the source rank. """ # Bypass the function if we are using only 1 GPU. if not torch.distributed.is_initialized() or self.world_size == 1: return tensor_dict group = self.device_group metadata_group = self.cpu_group assert src < self.world_size, f"Invalid src rank ({src})" rank_in_group = self.rank_in_group if rank_in_group == src: metadata_list: list[tuple[Any, Any]] = [] assert isinstance(tensor_dict, dict), ( f"Expecting a dictionary, got {type(tensor_dict)}" ) metadata_list, tensor_list = _split_tensor_dict(tensor_dict) # `metadata_list` lives in CPU memory. # `broadcast_object_list` has serialization & deserialization, # all happening on CPU. Therefore, we can use the CPU group. self.broadcast_object(metadata_list, src=src) async_handles = [] for tensor in tensor_list: if tensor.numel() == 0: # Skip broadcasting empty tensors. continue if tensor.is_cpu: # use metadata_group for CPU tensors handle = torch.distributed.broadcast( tensor, src=self.ranks[src], group=metadata_group, async_op=True ) else: # use group for GPU tensors handle = torch.distributed.broadcast( tensor, src=self.ranks[src], group=group, async_op=True ) async_handles.append(handle) for async_handle in async_handles: async_handle.wait() else: metadata_list = self.broadcast_object(None, src=src) tensor_dict = {} async_handles = [] for key, value in metadata_list: if isinstance(value, TensorMetadata): tensor = torch.empty( value.size, dtype=value.dtype, device=value.device ) if tensor.numel() == 0: # Skip broadcasting empty tensors. tensor_dict[key] = tensor continue if tensor.is_cpu: # use metadata_group for CPU tensors handle = torch.distributed.broadcast( tensor, src=self.ranks[src], group=metadata_group, async_op=True, ) else: # use group for GPU tensors handle = torch.distributed.broadcast( tensor, src=self.ranks[src], group=group, async_op=True ) async_handles.append(handle) tensor_dict[key] = tensor else: tensor_dict[key] = value for async_handle in async_handles: async_handle.wait() return tensor_dict def send_tensor_dict( self, tensor_dict: dict[str, torch.Tensor | Any], dst: int | None = None, all_gather_group: Optional["GroupCoordinator"] = None, all_gather_tensors: dict[str, bool] | None = None, ) -> dict[str, torch.Tensor | Any] | None: """Send the input tensor dictionary. NOTE: `dst` is the local rank of the source rank. all_gather_group: The group for the all-gather operation. If provided, an optimization is enabled where each rank in the group sends a slice of a tensor and the receiver reconstructs it using an all-gather, which can improve performance. This is typically the tensor-parallel group. all_gather_tensors: A dictionary to specify which tensors should use the all-gather optimization, which is only effective when `all_gather_group` is provided. By default, this optimization is on for any tensor whose size is divisible by the `all_gather_group`'s world size. However, it should be disabled for tensors that are not fully replicated across the group (e.g., the residual tensor when sequence parallelism is enabled). This dictionary allows overriding the default behavior on a per-tensor basis. """ # Bypass the function if we are using only 1 GPU. if not torch.distributed.is_initialized() or self.world_size == 1: return tensor_dict all_gather_size = 1 if all_gather_group is None else all_gather_group.world_size all_gather_rank = ( 0 if all_gather_group is None else all_gather_group.rank_in_group ) group = self.device_group metadata_group = self.cpu_group if dst is None: dst = (self.rank_in_group + 1) % self.world_size assert dst < self.world_size, f"Invalid dst rank ({dst})" if self.use_cpu_custom_send_recv: if self.device_communicator is None: raise ValueError("No device communicator found") self.device_communicator.send_tensor_dict( # type: ignore tensor_dict, dst ) return None metadata_list: list[tuple[Any, Any]] = [] assert isinstance(tensor_dict, dict), ( f"Expecting a dictionary, got {type(tensor_dict)}" ) metadata_list, tensor_list = _split_tensor_dict(tensor_dict) # `metadata_list` lives in CPU memory. # `send_object_list` has serialization & deserialization, # all happening on CPU. Therefore, we can use the CPU group. self.send_object(metadata_list, dst=dst) tensor_keys = [k for k, v in tensor_dict.items() if isinstance(v, torch.Tensor)] assert len(tensor_keys) == len(tensor_list) for key, tensor in zip(tensor_keys, tensor_list): if tensor.numel() == 0: # Skip sending empty tensors. continue # send-allgather: send only a slice, then do allgather. use_all_gather = ( all_gather_group is not None and tensor.numel() % all_gather_size == 0 ) use_all_gather = ( all_gather_tensors.get(key, use_all_gather) if all_gather_tensors else use_all_gather ) if use_all_gather: tensor = tensor.reshape(all_gather_size, -1)[all_gather_rank] if tensor.is_cpu: # use metadata_group for CPU tensors torch.distributed.send( tensor, dst=self.ranks[dst], group=metadata_group ) else: # use group for GPU tensors torch.distributed.send(tensor, dst=self.ranks[dst], group=group) return None def recv_tensor_dict( self, src: int | None = None, all_gather_group: Optional["GroupCoordinator"] = None, all_gather_tensors: dict[str, bool] | None = None, ) -> dict[str, torch.Tensor | Any] | None: """Recv the input tensor dictionary. NOTE: `src` is the local rank of the source rank. all_gather_group: The group for the all-gather operation. If provided, an optimization is enabled where each rank in the group sends a slice of a tensor and the receiver reconstructs it using an all-gather, which can improve performance. This is typically the tensor-parallel group. all_gather_tensors: A dictionary to specify which tensors should use the all-gather optimization, which is only effective when `all_gather_group` is provided. By default, this optimization is on for any tensor whose size is divisible by the `all_gather_group`'s world size. However, it should be disabled for tensors that are not fully replicated across the group (e.g., the residual tensor when sequence parallelism is enabled). This dictionary allows overriding the default behavior on a per-tensor basis. """ # Bypass the function if we are using only 1 GPU. if not torch.distributed.is_initialized() or self.world_size == 1: return None all_gather_size = 1 if all_gather_group is None else all_gather_group.world_size all_gather_rank = ( 0 if all_gather_group is None else all_gather_group.rank_in_group ) group = self.device_group metadata_group = self.cpu_group if src is None: src = (self.rank_in_group - 1) % self.world_size assert src < self.world_size, f"Invalid src rank ({src})" if self.use_cpu_custom_send_recv: if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.recv_tensor_dict( # type: ignore src ) recv_metadata_list = self.recv_object(src=src) tensor_dict: dict[str, Any] = {} for key, value in recv_metadata_list: if isinstance(value, TensorMetadata): tensor = torch.empty(value.size, dtype=value.dtype, device=value.device) if tensor.numel() == 0: # Skip broadcasting empty tensors. tensor_dict[key] = tensor continue # send-allgather: send only a slice, then do allgather. use_all_gather = ( all_gather_group is not None and tensor.numel() % all_gather_size == 0 ) use_all_gather = ( all_gather_tensors.get(key, use_all_gather) if all_gather_tensors else use_all_gather ) if use_all_gather: orig_shape = tensor.shape tensor = tensor.reshape(all_gather_size, -1)[all_gather_rank] if tensor.is_cpu: # use metadata_group for CPU tensors torch.distributed.recv( tensor, src=self.ranks[src], group=metadata_group ) else: # use group for GPU tensors torch.distributed.recv(tensor, src=self.ranks[src], group=group) if use_all_gather: # do the allgather tensor = all_gather_group.all_gather( # type: ignore tensor, dim=0 ) tensor = tensor.reshape(orig_shape) tensor_dict[key] = tensor else: tensor_dict[key] = value return tensor_dict def barrier(self): """Barrier synchronization among the group. NOTE: don't use `device_group` here! `barrier` in NCCL is terrible because it is internally a broadcast operation with secretly created GPU tensors. It is easy to mess up the current device. Use the CPU group instead. """ torch.distributed.barrier(group=self.cpu_group) def send(self, tensor: torch.Tensor, dst: int | None = None) -> None: """Sends a tensor to the destination rank in a blocking way""" """NOTE: `dst` is the local rank of the destination rank.""" if self.device_communicator is None: raise ValueError("No device communicator found") self.device_communicator.send(tensor, dst) def recv( self, size: torch.Size, dtype: torch.dtype, src: int | None = None ) -> torch.Tensor: """Receives a tensor from the source rank.""" """NOTE: `src` is the local rank of the source rank.""" if self.device_communicator is None: raise ValueError("No device communicator found") return self.device_communicator.recv(size, dtype, src) def destroy(self): if hasattr(self, "device_group"): torch.distributed.destroy_process_group(self.device_group) del self.device_group if hasattr(self, "cpu_group"): torch.distributed.destroy_process_group(self.cpu_group) del self.cpu_group if self.device_communicator is not None: self.device_communicator.destroy() if self.mq_broadcaster is not None: self.mq_broadcaster = None def prepare_communication_buffer_for_model(self, model: torch.nn.Module): if self.device_communicator is not None: self.device_communicator.prepare_communication_buffer_for_model(model) def dispatch( self, hidden_states: torch.Tensor, router_logits: torch.Tensor, is_sequence_parallel: bool = False, ) -> tuple[torch.Tensor, torch.Tensor]: if self.device_communicator is not None: return self.device_communicator.dispatch( hidden_states, router_logits, is_sequence_parallel ) else: return hidden_states, router_logits def combine( self, hidden_states, is_sequence_parallel: bool = False ) -> torch.Tensor: if self.device_communicator is not None: return self.device_communicator.combine(hidden_states, is_sequence_parallel) else: return hidden_states _WORLD: GroupCoordinator | None = None _INNER_DP_WORLD: GroupCoordinator | None = None _NODE_COUNT: int | None = None def get_world_group() -> GroupCoordinator: assert _WORLD is not None, "world group is not initialized" return _WORLD def get_inner_dp_world_group() -> GroupCoordinator: assert _INNER_DP_WORLD is not None, "inner dp world group is not initialized" return _INNER_DP_WORLD def init_world_group( ranks: list[int], local_rank: int, backend: str ) -> GroupCoordinator: return GroupCoordinator( group_ranks=[ranks], local_rank=local_rank, torch_distributed_backend=backend, use_device_communicator=False, group_name="world", ) def init_model_parallel_group( group_ranks: list[list[int]], local_rank: int, backend: str, use_message_queue_broadcaster: bool = False, group_name: str | None = None, use_device_communicator: bool = True, ) -> GroupCoordinator: return GroupCoordinator( group_ranks=group_ranks, local_rank=local_rank, torch_distributed_backend=backend, use_device_communicator=use_device_communicator, use_message_queue_broadcaster=use_message_queue_broadcaster, group_name=group_name, ) _TP: GroupCoordinator | None = None def get_tp_group() -> GroupCoordinator: assert _TP is not None, "tensor model parallel group is not initialized" return _TP _DCP: GroupCoordinator | None = None def get_dcp_group() -> GroupCoordinator: assert _DCP is not None, "decode context model parallel group is not initialized" return _DCP # kept for backward compatibility get_context_model_parallel_group = get_dcp_group _PP: GroupCoordinator | None = None def get_pp_group() -> GroupCoordinator: assert _PP is not None, "pipeline model parallel group is not initialized" return _PP _DP: GroupCoordinator | None = None def get_dp_group() -> GroupCoordinator: assert _DP is not None, "data parallel group is not initialized" return _DP _EP: GroupCoordinator | None = None def get_ep_group() -> GroupCoordinator: assert _EP is not None, "expert parallel group is not initialized" return _EP _PCP: GroupCoordinator | None = None def get_pcp_group() -> GroupCoordinator: assert _PCP is not None, "prefill context parallel group is not initialized" return _PCP @contextmanager def graph_capture(device: torch.device): """ `graph_capture` is a context manager which should surround the code that is capturing the CUDA graph. Its main purpose is to ensure that some operations will be run after the graph is captured, before the graph is replayed. It returns a `GraphCaptureContext` object which contains the necessary data for the graph capture. Currently, it only contains the stream that the graph capture is running on. This stream is set to the current CUDA stream when the context manager is entered and reset to the default stream when the context manager is exited. This is to ensure that the graph capture is running on a separate stream from the default stream, in order to explicitly distinguish the kernels to capture from other kernels possibly launched on background in the default stream. """ context = GraphCaptureContext(torch.cuda.Stream(device=device)) with get_tp_group().graph_capture(context), get_pp_group().graph_capture(context): yield context logger = init_logger(__name__) _ENABLE_CUSTOM_ALL_REDUCE = True def set_custom_all_reduce(enable: bool): global _ENABLE_CUSTOM_ALL_REDUCE _ENABLE_CUSTOM_ALL_REDUCE = enable def init_distributed_environment( world_size: int = -1, rank: int = -1, distributed_init_method: str = "env://", local_rank: int = -1, backend: str = "nccl", timeout: timedelta | None = None, ): logger.debug( "world_size=%d rank=%d local_rank=%d distributed_init_method=%s backend=%s", world_size, rank, local_rank, distributed_init_method, backend, ) from vllm.config import get_current_vllm_config config = get_current_vllm_config() if ( config is not None and config.parallel_config.distributed_executor_backend != "external_launcher" and ( config.parallel_config.nnodes > 1 or config.parallel_config.data_parallel_size > 1 ) ): parallel_config = config.parallel_config # adjust to take into account data parallelism # offset the rank by the data parallel rank rank = parallel_config.data_parallel_rank * world_size + rank # adjust the world size to take into account data parallelism world_size = parallel_config.world_size_across_dp # Use appropriate IP and port based on configuration if parallel_config.nnodes > 1: ip = parallel_config.master_addr port = parallel_config.master_port distributed_init_method = get_distributed_init_method(ip, port) else: ip = parallel_config.data_parallel_master_ip port = parallel_config.get_next_dp_init_port() distributed_init_method = get_distributed_init_method(ip, port) logger.debug( "Adjusting world_size=%d rank=%d distributed_init_method=%s for DP", world_size, rank, distributed_init_method, ) if not torch.distributed.is_initialized(): logger.info( "world_size=%d rank=%d local_rank=%d distributed_init_method=%s backend=%s", world_size, rank, local_rank, distributed_init_method, backend, ) assert distributed_init_method is not None, ( "distributed_init_method must be provided when initializing " "distributed environment" ) if not torch.distributed.is_backend_available(backend): logger.warning( "Distributed backend %s is not available; falling back to gloo.", backend, ) assert torch.distributed.is_gloo_available(), ( "Fallback Gloo backend is not available." ) backend = "gloo" # this backend is used for WORLD torch.distributed.init_process_group( backend=backend, init_method=distributed_init_method, world_size=world_size, rank=rank, timeout=timeout, ) # set the local rank # local_rank is not available in torch ProcessGroup, # see https://github.com/pytorch/pytorch/issues/122816 if local_rank == -1: # local rank not set, this usually happens in single-node # setting, where we can use rank as local rank local_rank = envs.LOCAL_RANK if distributed_init_method == "env://" else rank global _WORLD, _NODE_COUNT, _INNER_DP_WORLD if _WORLD is None: ranks = list(range(torch.distributed.get_world_size())) _WORLD = init_world_group(ranks, local_rank, backend) if config.parallel_config.nnodes > 1: _NODE_COUNT = config.parallel_config.nnodes else: _NODE_COUNT = _node_count(_WORLD.cpu_group) logger.debug("Detected %d nodes in the distributed environment", _NODE_COUNT) else: assert _WORLD.world_size == torch.distributed.get_world_size(), ( "world group already initialized with a different world size" ) if config.parallel_config.nnodes_within_dp > 1: if parallel_config.data_parallel_size > 1: world_size_inner_dp = parallel_config.world_size group_ranks = [ [dp_rank * world_size_inner_dp + i for i in range(world_size_inner_dp)] for dp_rank in range(parallel_config.data_parallel_size) ] _INNER_DP_WORLD = init_model_parallel_group( group_ranks, get_world_group().local_rank, backend, use_message_queue_broadcaster=True, group_name="inner_dp_world", use_device_communicator=False, ) else: _INNER_DP_WORLD = _WORLD def initialize_model_parallel( tensor_model_parallel_size: int = 1, pipeline_model_parallel_size: int = 1, prefill_context_model_parallel_size: int = 1, decode_context_model_parallel_size: int | None = 1, backend: str | None = None, ) -> None: """ Initialize model parallel groups. Arguments: tensor_model_parallel_size: number of GPUs used for tensor model parallelism. pipeline_model_parallel_size: number of GPUs used for pipeline model parallelism. backend: name of torch distributed communication backend. Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize the model pipeline. The present function will create 4 tensor model-parallel groups and 2 pipeline model-parallel groups: 4 tensor model-parallel groups: [g0, g1], [g2, g3], [g4, g5], [g6, g7] 2 pipeline model-parallel groups: [g0, g2, g4, g6], [g1, g3, g5, g7] Note that for efficiency, the caller should make sure adjacent ranks are on the same DGX box. For example if we are using 2 DGX-1 boxes with a total of 16 GPUs, rank 0 to 7 belong to the first box and ranks 8 to 15 belong to the second box. """ # Get world size and rank. Ensure some consistencies. assert torch.distributed.is_initialized() world_size: int = torch.distributed.get_world_size() rank = torch.distributed.get_rank() backend = backend or torch.distributed.get_backend(get_world_group().device_group) data_parallel_size = 1 from vllm.config import get_current_vllm_config config = get_current_vllm_config() if config is not None: data_parallel_size = config.parallel_config.data_parallel_size # the layout order is: ExternalDP x DP x PP x TP # ExternalDP is the data parallel group that is not part of the model, # every dp rank can generate independently (in verl integration). # DP is the data parallel group that is part of the model, # all the ranks in the same DP group should generate simultaneously, # i.e. the `generate` call in the same DP group should be called together, # otherwise it will cause deadlock. # to get group_ranks for each dimension, transpose that dimension to the # last dimension, then reshape to 2D, then unbind the last dimension all_ranks = torch.arange(world_size).reshape( -1, data_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, tensor_model_parallel_size, ) # noqa # Build the tensor model-parallel groups. global _TP assert _TP is None, "tensor model parallel group is already initialized" group_ranks = all_ranks.view(-1, tensor_model_parallel_size).unbind(0) group_ranks = [x.tolist() for x in group_ranks] # message queue broadcaster is only used in tensor model parallel group _TP = init_model_parallel_group( group_ranks, get_world_group().local_rank, backend, use_message_queue_broadcaster=True, group_name="tp", ) # Build the DCP model-parallel groups. global _DCP assert _DCP is None, "decode context model parallel group is already initialized" # Note(hc): In the current implementation of decode context parallel, # dcp_size must not exceed tp_size, because the world size does not # change by DCP, it simply reuses the GPUs of TP group, and split one # TP group into tp_size//dcp_size DCP groups. group_ranks = all_ranks.reshape(-1, decode_context_model_parallel_size).unbind(0) group_ranks = [x.tolist() for x in group_ranks] _DCP = init_model_parallel_group( group_ranks, get_world_group().local_rank, backend, use_message_queue_broadcaster=True, group_name="dcp", ) global _PCP assert _PCP is None, "prefill context parallel group is already initialized" group_ranks = ( all_ranks.transpose(3, 4) .reshape(-1, prefill_context_model_parallel_size) .unbind(0) ) group_ranks = [x.tolist() for x in group_ranks] _PCP = init_model_parallel_group( group_ranks, get_world_group().local_rank, backend, group_name="pcp" ) # Build the pipeline model-parallel groups. global _PP assert _PP is None, "pipeline model parallel group is already initialized" group_ranks = ( all_ranks.transpose(2, 4).reshape(-1, pipeline_model_parallel_size).unbind(0) ) group_ranks = [x.tolist() for x in group_ranks] _PP = init_model_parallel_group( group_ranks, get_world_group().local_rank, backend, group_name="pp" ) global _DP assert _DP is None, "data parallel group is already initialized" group_ranks = all_ranks.transpose(1, 4).reshape(-1, data_parallel_size).unbind(0) group_ranks = [x.tolist() for x in group_ranks] _DP = init_model_parallel_group( group_ranks, get_world_group().local_rank, backend, group_name="dp" ) global _EP assert _EP is None, "expert parallel group is already initialized" group_ranks = ( all_ranks.transpose(1, 2) .reshape( -1, data_parallel_size * prefill_context_model_parallel_size * tensor_model_parallel_size, ) .unbind(0) ) group_ranks = [x.tolist() for x in group_ranks] _EP = init_model_parallel_group( group_ranks, get_world_group().local_rank, backend, group_name="ep" ) logger.info_once( "rank %s in world size %s is assigned as " "DP rank %s, PP rank %s, PCP rank %s, " "TP rank %s, EP rank %s", rank, world_size, _DP.rank_in_group, _PP.rank_in_group, _PCP.rank_in_group, _TP.rank_in_group, _EP.rank_in_group, ) def ensure_model_parallel_initialized( tensor_model_parallel_size: int, pipeline_model_parallel_size: int, prefill_context_model_parallel_size: int = 1, decode_context_model_parallel_size: int | None = 1, backend: str | None = None, ) -> None: """Helper to initialize model parallel groups if they are not initialized, or ensure tensor-parallel and pipeline-parallel sizes are equal to expected values if the model parallel groups are initialized. """ backend = backend or torch.distributed.get_backend(get_world_group().device_group) if not model_parallel_is_initialized(): initialize_model_parallel( tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, backend, ) return assert get_tensor_model_parallel_world_size() == tensor_model_parallel_size, ( "tensor parallel group already initialized, but of unexpected size. " f"got: {get_tensor_model_parallel_world_size()=} vs. " f"wanted: {tensor_model_parallel_size=}" ) pp_world_size = get_pp_group().world_size assert pp_world_size == pipeline_model_parallel_size, ( "pipeline parallel group already initialized, but of unexpected size. " f"got: {pp_world_size=} vs. " f"wanted: {pipeline_model_parallel_size=}" ) pcp_world_size = get_pcp_group().world_size assert pcp_world_size == prefill_context_model_parallel_size, ( "prefill context parallel group already initialized, but of unexpected size: " f"{pcp_world_size=} vs. " f"{prefill_context_model_parallel_size=}" ) def prepare_communication_buffer_for_model(model: torch.nn.Module): """Prepare the communication buffer for the model. Traditional communication libraries like NCCL are almost model agnostic. However, emerging new communication libraries like MoE all2all (DeepEP) usually allocate the communication buffer based on the model shape for optimal performance. """ if _TP is not None: _TP.prepare_communication_buffer_for_model(model) if _PCP is not None: _PCP.prepare_communication_buffer_for_model(model) if _PP is not None: _PP.prepare_communication_buffer_for_model(model) if _DP is not None: _DP.prepare_communication_buffer_for_model(model) if _EP is not None: _EP.prepare_communication_buffer_for_model(model) def model_parallel_is_initialized(): """Check if tensor and pipeline parallel groups are initialized.""" return _TP is not None and _PP is not None _TP_STATE_PATCHED = False @contextmanager def patch_tensor_parallel_group(tp_group: GroupCoordinator): """Patch the tp group temporarily until this function ends. This method is for draft workers of speculative decoding to run draft model with different tp degree from that of target model workers. Args: tp_group (GroupCoordinator): the tp group coordinator """ global _TP_STATE_PATCHED assert not _TP_STATE_PATCHED, "Should not call when it's already patched" _TP_STATE_PATCHED = True old_tp_group = get_tp_group() global _TP _TP = tp_group try: yield finally: # restore the original state _TP_STATE_PATCHED = False _TP = old_tp_group def get_tensor_model_parallel_world_size(): """Return world size for the tensor model parallel group.""" return get_tp_group().world_size def get_tensor_model_parallel_rank(): """Return my rank for the tensor model parallel group.""" return get_tp_group().rank_in_group def get_decode_context_model_parallel_world_size(): """Return world size for the decode context model parallel group.""" return get_dcp_group().world_size def get_decode_context_model_parallel_rank(): """Return my rank for the decode context model parallel group.""" return get_dcp_group().rank_in_group def get_node_count() -> int: """Return the total number of nodes in the distributed environment.""" assert _NODE_COUNT is not None, "distributed environment is not initialized" return _NODE_COUNT def destroy_model_parallel(): """Set the groups to none and destroy them.""" global _TP if _TP: _TP.destroy() _TP = None global _DCP if _DCP: _DCP.destroy() _DCP = None global _PCP if _PCP: _PCP.destroy() _PCP = None global _PP if _PP: _PP.destroy() _PP = None global _DP if _DP: _DP.destroy() _DP = None global _EP if _EP: _EP.destroy() _EP = None def destroy_distributed_environment(): global _WORLD, _NODE_COUNT if _WORLD: _WORLD.destroy() _WORLD = None _NODE_COUNT = None if torch.distributed.is_initialized(): torch.distributed.destroy_process_group() def cleanup_dist_env_and_memory(shutdown_ray: bool = False): # Ensure all objects are not frozen before cleanup gc.unfreeze() destroy_model_parallel() destroy_distributed_environment() if shutdown_ray: import ray # Lazy import Ray ray.shutdown() gc.collect() from vllm.platforms import current_platform empty_cache = current_platform.empty_cache if empty_cache is not None: empty_cache() try: if not current_platform.is_cpu(): torch._C._host_emptyCache() except AttributeError: logger.warning("torch._C._host_emptyCache() only available in Pytorch >=2.5") def in_the_same_node_as( pg: ProcessGroup | StatelessProcessGroup, source_rank: int = 0 ) -> list[bool]: """ This is a collective operation that returns if each rank is in the same node as the source rank. It tests if processes are attached to the same memory system (shared access to shared memory). """ if isinstance(pg, ProcessGroup): assert torch.distributed.get_backend(pg) != torch.distributed.Backend.NCCL, ( "in_the_same_node_as should be tested with a non-NCCL group." ) # local rank inside the group rank = torch.distributed.get_rank(group=pg) world_size = torch.distributed.get_world_size(group=pg) # global ranks of the processes in the group ranks = torch.distributed.get_process_group_ranks(pg) else: rank = pg.rank world_size = pg.world_size ranks = list(range(world_size)) # local tensor in each process to store the result is_in_the_same_node = torch.tensor( [0] * world_size, dtype=torch.int32, device="cpu" ) magic_message = b"magic_message" shm = None try: with contextlib.suppress(OSError): if rank == source_rank: # create a shared memory segment shm = shared_memory.SharedMemory(create=True, size=128) shm.buf[: len(magic_message)] = magic_message if isinstance(pg, ProcessGroup): torch.distributed.broadcast_object_list( [shm.name], src=ranks[source_rank], group=pg ) else: pg.broadcast_obj(shm.name, src=source_rank) is_in_the_same_node[rank] = 1 else: # try to open the shared memory segment if isinstance(pg, ProcessGroup): recv = [None] torch.distributed.broadcast_object_list( recv, src=ranks[source_rank], group=pg ) name = recv[0] else: name = pg.broadcast_obj(None, src=source_rank) # fix to https://stackoverflow.com/q/62748654/9191338 # Python incorrectly tracks shared memory even if it is not # created by the process. The following patch is a workaround. with patch( "multiprocessing.resource_tracker.register", lambda *args, **kwargs: None, ): shm = shared_memory.SharedMemory(name=name) if shm.buf[: len(magic_message)] == magic_message: is_in_the_same_node[rank] = 1 except Exception as e: logger.error("Error ignored in is_in_the_same_node: %s", e) finally: if shm: shm.close() if isinstance(pg, ProcessGroup): torch.distributed.barrier(group=pg) else: pg.barrier() # clean up the shared memory segment with contextlib.suppress(OSError): if rank == source_rank and shm: shm.unlink() if isinstance(pg, ProcessGroup): torch.distributed.all_reduce(is_in_the_same_node, group=pg) aggregated_data = is_in_the_same_node else: aggregated_data = torch.zeros_like(is_in_the_same_node) for i in range(world_size): rank_data = pg.broadcast_obj(is_in_the_same_node, src=i) aggregated_data += rank_data return [x == 1 for x in aggregated_data.tolist()] def is_global_first_rank() -> bool: """ Check if the current process is the first rank globally across all parallelism strategies (PP, TP, DP, EP, etc.). Unlike group-specific checks like `get_tensor_model_parallel_rank() == 0` or `get_pp_group().is_first_rank`, this function checks the global rank across all parallelism dimensions. Returns: bool: True if this is the global first rank (rank 0), False otherwise. Returns True if distributed is not initialized (single process). """ try: # If world group is available, use it for the most accurate check global _WORLD if _WORLD is not None: return _WORLD.is_first_rank # If torch distributed is not initialized, assume single process if not torch.distributed.is_initialized(): return True # Fallback to torch's global rank return torch.distributed.get_rank() == 0 except Exception: # If anything goes wrong, assume this is the first rank return True def is_local_first_rank() -> bool: """ Check if the current process is the first local rank (rank 0 on its node). """ try: # prefer the initialized world group if available global _WORLD if _WORLD is not None: return _WORLD.local_rank == 0 if not torch.distributed.is_initialized(): return True # fallback to environment-provided local rank if available # note: envs.LOCAL_RANK is set when using env:// launchers (e.g., torchrun) try: return int(envs.LOCAL_RANK) == 0 # type: ignore[arg-type] except Exception: return torch.distributed.get_rank() == 0 except Exception: return True def _node_count(pg: ProcessGroup | StatelessProcessGroup) -> int: """ Returns the total number of nodes in the process group. Args: pg: The process group to analyze Returns: int: The total number of nodes """ if isinstance(pg, ProcessGroup): world_size = torch.distributed.get_world_size(group=pg) else: world_size = pg.world_size if world_size == 1: return 1 # Build node assignment map node_assignment = [0] * world_size # rank -> node_id next_node_id = 0 for current_rank in range(world_size): if node_assignment[current_rank] != 0: continue # Already assigned to a node # Assign current rank to a new node next_node_id += 1 node_assignment[current_rank] = next_node_id # Find all ranks on the same node as current_rank same_node_flags = in_the_same_node_as(pg, current_rank) for other_rank, is_same_node in enumerate(same_node_flags): if is_same_node and node_assignment[other_rank] == 0: node_assignment[other_rank] = next_node_id return next_node_id