# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Copyright 2025 The vLLM team. # Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Iterable from itertools import islice import torch import torch.nn.functional as F from torch import nn from transformers import Gemma3TextConfig from vllm.attention import Attention, AttentionType from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.logger import init_logger from vllm.model_executor.layers.activation import GeluAndMul from vllm.model_executor.layers.layernorm import GemmaRMSNorm from vllm.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name, ) from vllm.sequence import IntermediateTensors from ...attention.layers.encoder_only_attention import EncoderOnlyAttention from .interfaces import SupportsLoRA, SupportsPP from .utils import ( AutoWeightsLoader, extract_layer_index, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) logger = init_logger(__name__) class Gemma3MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_activation: str, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) if hidden_activation != "gelu_pytorch_tanh": raise ValueError( "Gemma3 uses `gelu_pytorch_tanh` as the hidden activation " "function. Please set `hidden_act` and `hidden_activation` to " "`gelu_pytorch_tanh`." ) self.act_fn = GeluAndMul(approximate="tanh") def forward(self, x: torch.Tensor) -> torch.Tensor: gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Gemma3Attention(nn.Module): def __init__( self, config: Gemma3TextConfig, hidden_size: int, num_heads: int, num_kv_heads: int, head_dim: int, max_position_embeddings: int, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, attn_logits_soft_cap: float | None = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = head_dim self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = config.query_pre_attn_scalar**-0.5 self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=config.attention_bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=config.attention_bias, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.q_norm = GemmaRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_norm = GemmaRMSNorm(self.head_dim, eps=config.rms_norm_eps) layer_idx = extract_layer_index(prefix) self.is_sliding = config.layer_types[layer_idx] == "sliding_attention" sliding_window = config.sliding_window if self.is_sliding else None # Initialize the rotary embedding. if self.is_sliding: # Local attention. Override the values in config.json. self.rope_theta = config.rope_local_base_freq self.rope_scaling = {"rope_type": "default"} else: # Global attention. Use the values in config.json. self.rope_theta = config.rope_theta self.rope_scaling = config.rope_scaling self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=self.rope_theta, is_neox_style=True, rope_scaling=self.rope_scaling, ) if getattr(config, "is_causal", True): attn_type = AttentionType.DECODER else: attn_type = AttentionType.ENCODER_ONLY attn_cls = ( EncoderOnlyAttention if attn_type == AttentionType.ENCODER_ONLY else Attention ) self.attn = attn_cls( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, attn_type=attn_type, logits_soft_cap=attn_logits_soft_cap, per_layer_sliding_window=sliding_window, prefix=f"{prefix}.attn", ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, **kwargs, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q = q.unflatten(-1, (self.num_heads, self.head_dim)) q = self.q_norm(q) q = q.flatten(-2, -1) k = k.unflatten(-1, (self.num_kv_heads, self.head_dim)) k = self.k_norm(k) k = k.flatten(-2, -1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) if not kwargs.get("has_images", False): # Fast path for text-only inputs. The performance for the text-only # inputs are not affected by the naive attention below. output, _ = self.o_proj(attn_output) return output # NOTE(woosuk): Gemma3 uses bidirectional attention between image tokens # that correspond to the same image while using causal attention # otherwise. Current attention backends cannot handle this pattern, so # we temporarily use a naive attention implementation with mask tensors. # We intentionally keep the attention backend as-is and only override # `attn_output` with the naive implementation's output. This minimizes # changes to existing model runners and attention backends. The call to # `self.attn(q, k, v)` is only used to populate the KV cache - its # output is discarded and overwritten below. While this duplicates # computation, it maintains compatibility. # TODO(woosuk): Optimize by implementing custom attention kernels. attn_output = self.naive_attn_with_masks(q, k, v, out=attn_output, **kwargs) output, _ = self.o_proj(attn_output) return output def naive_attn_with_masks( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor, **kwargs, ) -> torch.Tensor: # NOTE(woosuk): As described in the comment above, this code is not # meant to be performant. It is only meant to be correct. q = q.view(-1, self.num_heads, self.head_dim) # Expand the key and value to handle GQA. num_queries_per_kv = self.num_heads // self.num_kv_heads k = k.view(-1, self.num_kv_heads, self.head_dim) k = k.repeat_interleave(num_queries_per_kv, dim=-2) v = v.view(-1, self.num_kv_heads, self.head_dim) v = v.repeat_interleave(num_queries_per_kv, dim=-2) if self.is_sliding: attn_masks = kwargs["local_attn_masks"] else: attn_masks = kwargs["global_attn_masks"] seq_lens = kwargs["seq_lens"] start_idx = 0 for seq_len, attn_mask in zip(seq_lens, attn_masks): end_idx = start_idx + seq_len query = q[start_idx:end_idx].unsqueeze(0) key = k[start_idx:end_idx].unsqueeze(0) value = v[start_idx:end_idx].unsqueeze(0) # Transpose. query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) output = F.scaled_dot_product_attention( query, key, value, attn_mask, self.scaling, ) output = output.transpose(1, 2).flatten(-2, -1) out[start_idx:end_idx] = output start_idx = end_idx return out class Gemma3DecoderLayer(nn.Module): def __init__( self, config: Gemma3TextConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size self.self_attn = Gemma3Attention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, head_dim=config.head_dim, max_position_embeddings=config.max_position_embeddings, cache_config=cache_config, quant_config=quant_config, attn_logits_soft_cap=None, prefix=f"{prefix}.self_attn", ) self.hidden_size = config.hidden_size self.mlp = Gemma3MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_activation=config.hidden_activation, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GemmaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) self.pre_feedforward_layernorm = GemmaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) self.post_feedforward_layernorm = GemmaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, **kwargs, ) -> tuple[torch.Tensor, torch.Tensor]: if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, residual = self.pre_feedforward_layernorm( hidden_states, residual ) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) return hidden_states, residual @support_torch_compile class Gemma3Model(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.embed_tokens", ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: Gemma3DecoderLayer( config, cache_config, quant_config, prefix=prefix ), prefix=f"{prefix}.layers", ) self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) # Normalize the embedding by sqrt(hidden_size) # The normalizer's data type should be downcasted to the model's # data type such as bfloat16, not float32. # See https://github.com/huggingface/transformers/pull/29402 normalizer = self.config.hidden_size**0.5 self.register_buffer("normalizer", torch.tensor(normalizer), persistent=False) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: # NOTE(woosuk): Only apply the normalizer to the output of # vocab embedding. Don't apply it to the vision embedding. return self.embed_tokens(input_ids) * self.normalizer def forward( self, input_ids: torch.Tensor | None, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, **kwargs, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states, residual = layer( positions, hidden_states, residual, **kwargs, ) if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: # Revert +1 during llama.cpp conversion # see: https://github.com/ggml-org/llama.cpp/blob/be7c3034108473beda214fd1d7c98fd6a7a3bdf5/convert_hf_to_gguf.py#L3397-L3400 if ( self.quant_config and self.quant_config.get_name() == "gguf" and name.endswith("norm.weight") ): loaded_weight -= 1 if self.quant_config is not None and ( scale_name := self.quant_config.get_cache_scale(name) ): # Loading kv cache scales for compressed-tensors quantization param = params_dict[scale_name] weight_loader = getattr(param, "weight_loader", default_weight_loader) loaded_weight = loaded_weight[0] weight_loader(param, loaded_weight) loaded_params.add(scale_name) continue # Check if this is a scale parameter that needs remapping first if name.endswith((".k_scale", ".v_scale", ".q_scale", ".prob_scale")): # Try to remap the scale name first remapped_name = maybe_remap_kv_scale_name(name, params_dict) if remapped_name is not None and remapped_name in params_dict: # Successfully remapped, use the remapped name param = params_dict[remapped_name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(remapped_name) continue # If remapping failed, continue with normal processing for param_name, shard_name, shard_id in stacked_params_mapping: if shard_name not in name: continue name = name.replace(shard_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class Gemma3ForCausalLM(nn.Module, SupportsLoRA, SupportsPP): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config super().__init__() self.config = config # currently all existing Gemma models have `tie_word_embeddings` enabled assert config.tie_word_embeddings self.quant_config = quant_config self.model = Gemma3Model( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) self.logits_processor = LogitsProcessor( config.vocab_size, soft_cap=config.final_logit_softcapping ) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, **kwargs, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.model( input_ids, positions, intermediate_tensors, inputs_embeds, **kwargs ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.model.embed_tokens, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights)