# SPDX-License-Identifier: Apache-2.0 import os import re from typing import Optional import pytest from huggingface_hub import snapshot_download from transformers import AutoTokenizer from vllm.lora.request import LoRARequest from vllm.multimodal.image import rescale_image_size from vllm.platforms import current_platform from vllm.sequence import SampleLogprobs from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner from ....utils import large_gpu_test from ...utils import check_logprobs_close HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ "stop_sign": "<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501 "cherry_blossom": "<|user|>\n<|image_1|>\nPlease infer the season with reason in details.<|end|>\n<|assistant|>\n", # noqa: E501 }) HF_MULTIIMAGE_IMAGE_PROMPT = "<|user|>\n<|image_1|>\n<|image_2|>\nDescribe these images.<|end|>\n<|assistant|>\n" # noqa: E501 model_path = snapshot_download("microsoft/Phi-4-multimodal-instruct") # Since the vision-lora and speech-lora co-exist with the base model, # we have to manually specify the path of the lora weights. vision_lora_path = os.path.join(model_path, "vision-lora") models = [model_path] def vllm_to_hf_output(vllm_output: tuple[list[int], str, Optional[SampleLogprobs]], model: str): """Sanitize vllm output to be comparable with hf output.""" _, output_str, out_logprobs = vllm_output output_str_without_image = re.sub(r"(<\|image_\d+\|>)+", "", output_str) assert output_str_without_image[0] == " " output_str_without_image = output_str_without_image[1:] hf_output_str = output_str_without_image + "<|end|><|endoftext|>" tokenizer = AutoTokenizer.from_pretrained(model) hf_output_ids = tokenizer.encode(output_str_without_image) assert hf_output_ids[0] == 1 hf_output_ids = hf_output_ids[1:] return hf_output_ids, hf_output_str, out_logprobs target_dtype = "half" # ROCm Triton FA can run into shared memory issues with these models, # use other backends in the meantime # FIXME (mattwong, gshtrasb, hongxiayan) if current_platform.is_rocm(): os.environ["VLLM_USE_TRITON_FLASH_ATTN"] = "0" def run_test( hf_runner: type[HfRunner], vllm_runner: type[VllmRunner], inputs: list[tuple[list[str], PromptImageInput]], model: str, *, max_model_len: int, dtype: str, max_tokens: int, num_logprobs: int, mm_limit: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): """Inference result should be the same between hf and vllm. All the image fixtures for the test are from IMAGE_ASSETS. For huggingface runner, we provide the PIL images as input. For vllm runner, we provide MultiModalDataDict objects and corresponding MultiModalConfig as input. Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ # NOTE: take care of the order. run vLLM first, and then run HF. # vLLM needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size with vllm_runner( model, task="generate", max_model_len=max_model_len, max_num_seqs=2, dtype=dtype, limit_mm_per_prompt={"image": mm_limit}, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enable_lora=True, max_lora_rank=320, gpu_memory_utilization=0.8, # set to 0.8 to avoid OOM in CI enforce_eager=True, ) as vllm_model: lora_request = LoRARequest("vision", 1, vision_lora_path) vllm_model.model.llm_engine.add_lora(lora_request=lora_request) vllm_outputs_per_case = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs ] # use eager mode for hf runner, since phi3_v didn't work with flash_attn hf_model_kwargs = {"_attn_implementation": "eager"} with hf_runner(model, dtype=dtype, model_kwargs=hf_model_kwargs) as hf_model: eos_token_id = hf_model.processor.tokenizer.eos_token_id hf_outputs_per_case = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, num_logprobs=num_logprobs, images=images, eos_token_id=eos_token_id, num_logits_to_keep=0) for prompts, images in inputs ] for hf_outputs, vllm_outputs in zip(hf_outputs_per_case, vllm_outputs_per_case): check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=vllm_outputs, name_0="hf", name_1="vllm", ) # Since we use _attn_implementation="eager" for hf_runner, there is more # significant numerical difference. The basic `logprobs=5` fails to pass. @pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.7, 0.75, 1.0], ], ) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_model_len", [4096]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [10]) def test_models(hf_runner, vllm_runner, image_assets, model, size_factors, dtype: str, max_model_len: int, max_tokens: int, num_logprobs: int) -> None: images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] run_test( hf_runner, vllm_runner, inputs_per_image, model, dtype=dtype, max_model_len=max_model_len, max_tokens=max_tokens, num_logprobs=num_logprobs, mm_limit=1, tensor_parallel_size=1, ) @large_gpu_test(min_gb=48) @pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ # No image # [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_model_len", [10000]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [10]) @pytest.mark.xfail( reason="Phi-4-MM multi-image inference is divergent with hf model.") def test_multi_images_models(hf_runner, vllm_runner, image_assets, model, size_factors, dtype: str, max_model_len: int, max_tokens: int, num_logprobs: int) -> None: images = [asset.pil_image for asset in image_assets] inputs_per_case = [ ([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors], [[rescale_image_size(image, factor) for image in images] for factor in size_factors]) ] run_test( hf_runner, vllm_runner, inputs_per_case, model, dtype=dtype, max_model_len=max_model_len, max_tokens=max_tokens, num_logprobs=num_logprobs, mm_limit=2, tensor_parallel_size=1, )