# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # ruff: noqa import hashlib import json import os import pickle import socket import tempfile from pathlib import Path from unittest.mock import patch import pytest import torch import yaml import zmq from transformers import AutoTokenizer from vllm_test_utils.monitor import monitor from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config from vllm.transformers_utils.detokenizer_utils import convert_ids_list_to_tokens from vllm.utils import ( FlexibleArgumentParser, MemorySnapshot, bind_kv_cache, common_broadcastable_dtype, current_stream, get_open_port, get_tcp_uri, is_lossless_cast, join_host_port, make_zmq_path, make_zmq_socket, memory_profiling, sha256, split_host_port, split_zmq_path, unique_filepath, ) from ..utils import create_new_process_for_each_test, flat_product def test_get_open_port(monkeypatch: pytest.MonkeyPatch): with monkeypatch.context() as m: m.setenv("VLLM_PORT", "5678") # make sure we can get multiple ports, even if the env var is set with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1: s1.bind(("localhost", get_open_port())) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s2: s2.bind(("localhost", get_open_port())) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s3: s3.bind(("localhost", get_open_port())) # Tests for FlexibleArgumentParser @pytest.fixture def parser(): parser = FlexibleArgumentParser() parser.add_argument( "--image-input-type", choices=["pixel_values", "image_features"] ) parser.add_argument("--model-name") parser.add_argument("--batch-size", type=int) parser.add_argument("--enable-feature", action="store_true") parser.add_argument("--hf-overrides", type=json.loads) parser.add_argument("-O", "--compilation-config", type=json.loads) return parser @pytest.fixture def parser_with_config(): parser = FlexibleArgumentParser() parser.add_argument("serve") parser.add_argument("model_tag", nargs="?") parser.add_argument("--model", type=str) parser.add_argument("--served-model-name", type=str) parser.add_argument("--config", type=str) parser.add_argument("--port", type=int) parser.add_argument("--tensor-parallel-size", type=int) parser.add_argument("--trust-remote-code", action="store_true") return parser def test_underscore_to_dash(parser): args = parser.parse_args(["--image_input_type", "pixel_values"]) assert args.image_input_type == "pixel_values" def test_mixed_usage(parser): args = parser.parse_args( ["--image_input_type", "image_features", "--model-name", "facebook/opt-125m"] ) assert args.image_input_type == "image_features" assert args.model_name == "facebook/opt-125m" def test_with_equals_sign(parser): args = parser.parse_args( ["--image_input_type=pixel_values", "--model-name=facebook/opt-125m"] ) assert args.image_input_type == "pixel_values" assert args.model_name == "facebook/opt-125m" def test_with_int_value(parser): args = parser.parse_args(["--batch_size", "32"]) assert args.batch_size == 32 args = parser.parse_args(["--batch-size", "32"]) assert args.batch_size == 32 def test_with_bool_flag(parser): args = parser.parse_args(["--enable_feature"]) assert args.enable_feature is True args = parser.parse_args(["--enable-feature"]) assert args.enable_feature is True def test_invalid_choice(parser): with pytest.raises(SystemExit): parser.parse_args(["--image_input_type", "invalid_choice"]) def test_missing_required_argument(parser): parser.add_argument("--required-arg", required=True) with pytest.raises(SystemExit): parser.parse_args([]) def test_cli_override_to_config(parser_with_config, cli_config_file): args = parser_with_config.parse_args( ["serve", "mymodel", "--config", cli_config_file, "--tensor-parallel-size", "3"] ) assert args.tensor_parallel_size == 3 args = parser_with_config.parse_args( ["serve", "mymodel", "--tensor-parallel-size", "3", "--config", cli_config_file] ) assert args.tensor_parallel_size == 3 assert args.port == 12312 args = parser_with_config.parse_args( [ "serve", "mymodel", "--tensor-parallel-size", "3", "--config", cli_config_file, "--port", "666", ] ) assert args.tensor_parallel_size == 3 assert args.port == 666 def test_config_args(parser_with_config, cli_config_file): args = parser_with_config.parse_args( ["serve", "mymodel", "--config", cli_config_file] ) assert args.tensor_parallel_size == 2 assert args.trust_remote_code def test_config_file(parser_with_config): with pytest.raises(FileNotFoundError): parser_with_config.parse_args( ["serve", "mymodel", "--config", "test_config.yml"] ) with pytest.raises(ValueError): parser_with_config.parse_args( ["serve", "mymodel", "--config", "./data/test_config.json"] ) with pytest.raises(ValueError): parser_with_config.parse_args( [ "serve", "mymodel", "--tensor-parallel-size", "3", "--config", "--batch-size", "32", ] ) def test_no_model_tag(parser_with_config, cli_config_file): with pytest.raises(ValueError): parser_with_config.parse_args(["serve", "--config", cli_config_file]) def test_dict_args(parser): args = [ "--model-name=something.something", "--hf-overrides.key1", "val1", # Test nesting "--hf-overrides.key2.key3", "val2", "--hf-overrides.key2.key4", "val3", # Test compile config and compilation mode "-O.use_inductor=true", "-O.backend", "custom", "-O1", # Test = sign "--hf-overrides.key5=val4", # Test underscore to dash conversion "--hf_overrides.key_6", "val5", "--hf_overrides.key-7.key_8", "val6", # Test data type detection "--hf_overrides.key9", "100", "--hf_overrides.key10", "100.0", "--hf_overrides.key11", "true", "--hf_overrides.key12.key13", "null", # Test '-' and '.' in value "--hf_overrides.key14.key15", "-minus.and.dot", # Test array values "-O.custom_ops+", "-quant_fp8", "-O.custom_ops+=+silu_mul,-rms_norm", ] parsed_args = parser.parse_args(args) assert parsed_args.model_name == "something.something" assert parsed_args.hf_overrides == { "key1": "val1", "key2": { "key3": "val2", "key4": "val3", }, "key5": "val4", "key_6": "val5", "key-7": { "key_8": "val6", }, "key9": 100, "key10": 100.0, "key11": True, "key12": { "key13": None, }, "key14": { "key15": "-minus.and.dot", }, } assert parsed_args.compilation_config == { "mode": 1, "use_inductor": True, "backend": "custom", "custom_ops": ["-quant_fp8", "+silu_mul", "-rms_norm"], } def test_duplicate_dict_args(caplog_vllm, parser): args = [ "--model-name=something.something", "--hf-overrides.key1", "val1", "--hf-overrides.key1", "val2", "-O1", "-O.mode", "2", "-O3", ] parsed_args = parser.parse_args(args) # Should be the last value assert parsed_args.hf_overrides == {"key1": "val2"} assert parsed_args.compilation_config == {"mode": 3} assert len(caplog_vllm.records) == 1 assert "duplicate" in caplog_vllm.text assert "--hf-overrides.key1" in caplog_vllm.text assert "-O.mode" in caplog_vllm.text @create_new_process_for_each_test() def test_memory_profiling(): # Fake out some model loading + inference memory usage to test profiling # Memory used by other processes will show up as cuda usage outside of torch from vllm.distributed.device_communicators.cuda_wrapper import CudaRTLibrary lib = CudaRTLibrary() # 512 MiB allocation outside of this instance handle1 = lib.cudaMalloc(512 * 1024 * 1024) baseline_snapshot = MemorySnapshot() # load weights weights = torch.randn(128, 1024, 1024, device="cuda", dtype=torch.float32) weights_memory = 128 * 1024 * 1024 * 4 # 512 MiB def measure_current_non_torch(): free, total = torch.cuda.mem_get_info() current_used = total - free current_torch = torch.cuda.memory_reserved() current_non_torch = current_used - current_torch return current_non_torch with ( memory_profiling( baseline_snapshot=baseline_snapshot, weights_memory=weights_memory ) as result, monitor(measure_current_non_torch) as monitored_values, ): # make a memory spike, 1 GiB spike = torch.randn(256, 1024, 1024, device="cuda", dtype=torch.float32) del spike # Add some extra non-torch memory 256 MiB (simulate NCCL) handle2 = lib.cudaMalloc(256 * 1024 * 1024) # this is an analytic value, it is exact, # we only have 256 MiB non-torch memory increase measured_diff = monitored_values.values[-1] - monitored_values.values[0] assert measured_diff == 256 * 1024 * 1024 # Check that the memory usage is within 5% of the expected values # 5% tolerance is caused by cuda runtime. # we cannot control cuda runtime in the granularity of bytes, # which causes a small error (<10 MiB in practice) non_torch_ratio = result.non_torch_increase / (256 * 1024 * 1024) # noqa assert abs(non_torch_ratio - 1) <= 0.05 assert result.torch_peak_increase == 1024 * 1024 * 1024 del weights lib.cudaFree(handle1) lib.cudaFree(handle2) def test_bind_kv_cache(): from vllm.attention import Attention ctx = { "layers.0.self_attn": Attention(32, 128, 0.1), "layers.1.self_attn": Attention(32, 128, 0.1), "layers.2.self_attn": Attention(32, 128, 0.1), "layers.3.self_attn": Attention(32, 128, 0.1), } kv_cache = [ torch.zeros((1,)), torch.zeros((1,)), torch.zeros((1,)), torch.zeros((1,)), ] bind_kv_cache(ctx, [kv_cache]) assert ctx["layers.0.self_attn"].kv_cache[0] is kv_cache[0] assert ctx["layers.1.self_attn"].kv_cache[0] is kv_cache[1] assert ctx["layers.2.self_attn"].kv_cache[0] is kv_cache[2] assert ctx["layers.3.self_attn"].kv_cache[0] is kv_cache[3] def test_bind_kv_cache_kv_sharing(): from vllm.attention import Attention ctx = { "layers.0.self_attn": Attention(32, 128, 0.1), "layers.1.self_attn": Attention(32, 128, 0.1), "layers.2.self_attn": Attention(32, 128, 0.1), "layers.3.self_attn": Attention(32, 128, 0.1), } kv_cache = [ torch.zeros((1,)), torch.zeros((1,)), torch.zeros((1,)), torch.zeros((1,)), ] shared_kv_cache_layers = { "layers.2.self_attn": "layers.1.self_attn", "layers.3.self_attn": "layers.0.self_attn", } bind_kv_cache(ctx, [kv_cache], shared_kv_cache_layers) assert ctx["layers.0.self_attn"].kv_cache[0] is kv_cache[0] assert ctx["layers.1.self_attn"].kv_cache[0] is kv_cache[1] assert ctx["layers.2.self_attn"].kv_cache[0] is kv_cache[1] assert ctx["layers.3.self_attn"].kv_cache[0] is kv_cache[0] def test_bind_kv_cache_non_attention(): from vllm.attention import Attention # example from Jamba PP=2 ctx = { "model.layers.20.attn": Attention(32, 128, 0.1), "model.layers.28.attn": Attention(32, 128, 0.1), } kv_cache = [ torch.zeros((1,)), torch.zeros((1,)), ] bind_kv_cache(ctx, [kv_cache]) assert ctx["model.layers.20.attn"].kv_cache[0] is kv_cache[0] assert ctx["model.layers.28.attn"].kv_cache[0] is kv_cache[1] def test_bind_kv_cache_pp(): with patch("vllm.utils.cuda_device_count_stateless", lambda: 2): # this test runs with 1 GPU, but we simulate 2 GPUs cfg = VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=2)) with set_current_vllm_config(cfg): from vllm.attention import Attention ctx = { "layers.0.self_attn": Attention(32, 128, 0.1), } kv_cache = [[torch.zeros((1,))], [torch.zeros((1,))]] bind_kv_cache(ctx, kv_cache) assert ctx["layers.0.self_attn"].kv_cache[0] is kv_cache[0][0] assert ctx["layers.0.self_attn"].kv_cache[1] is kv_cache[1][0] @pytest.mark.parametrize( ("src_dtype", "tgt_dtype", "expected_result"), [ # Different precision_levels (torch.bool, torch.int8, True), (torch.bool, torch.float16, True), (torch.bool, torch.complex32, True), (torch.int64, torch.bool, False), (torch.int64, torch.float16, True), (torch.int64, torch.complex32, True), (torch.float64, torch.bool, False), (torch.float64, torch.int8, False), (torch.float64, torch.complex32, True), (torch.complex128, torch.bool, False), (torch.complex128, torch.int8, False), (torch.complex128, torch.float16, False), # precision_level=0 (torch.bool, torch.bool, True), # precision_level=1 (torch.int8, torch.int16, True), (torch.int16, torch.int8, False), (torch.uint8, torch.int8, False), (torch.int8, torch.uint8, False), # precision_level=2 (torch.float16, torch.float32, True), (torch.float32, torch.float16, False), (torch.bfloat16, torch.float32, True), (torch.float32, torch.bfloat16, False), # precision_level=3 (torch.complex32, torch.complex64, True), (torch.complex64, torch.complex32, False), ], ) def test_is_lossless_cast(src_dtype, tgt_dtype, expected_result): assert is_lossless_cast(src_dtype, tgt_dtype) == expected_result @pytest.mark.parametrize( ("dtypes", "expected_result"), [ ([torch.bool], torch.bool), ([torch.bool, torch.int8], torch.int8), ([torch.bool, torch.int8, torch.float16], torch.float16), ([torch.bool, torch.int8, torch.float16, torch.complex32], torch.complex32), # noqa: E501 ], ) def test_common_broadcastable_dtype(dtypes, expected_result): assert common_broadcastable_dtype(dtypes) == expected_result def test_model_specification( parser_with_config, cli_config_file, cli_config_file_with_model ): # Test model in CLI takes precedence over config args = parser_with_config.parse_args( ["serve", "cli-model", "--config", cli_config_file_with_model] ) assert args.model_tag == "cli-model" assert args.served_model_name == "mymodel" # Test model from config file works args = parser_with_config.parse_args( [ "serve", "--config", cli_config_file_with_model, ] ) assert args.model == "config-model" assert args.served_model_name == "mymodel" # Test no model specified anywhere raises error with pytest.raises(ValueError, match="No model specified!"): parser_with_config.parse_args(["serve", "--config", cli_config_file]) # Test using --model option raises error # with pytest.raises( # ValueError, # match= # ("With `vllm serve`, you should provide the model as a positional " # "argument or in a config file instead of via the `--model` option."), # ): # parser_with_config.parse_args(['serve', '--model', 'my-model']) # Test using --model option back-compatibility # (when back-compatibility ends, the above test should be uncommented # and the below test should be removed) args = parser_with_config.parse_args( [ "serve", "--tensor-parallel-size", "2", "--model", "my-model", "--trust-remote-code", "--port", "8001", ] ) assert args.model is None assert args.tensor_parallel_size == 2 assert args.trust_remote_code is True assert args.port == 8001 args = parser_with_config.parse_args( [ "serve", "--tensor-parallel-size=2", "--model=my-model", "--trust-remote-code", "--port=8001", ] ) assert args.model is None assert args.tensor_parallel_size == 2 assert args.trust_remote_code is True assert args.port == 8001 # Test other config values are preserved args = parser_with_config.parse_args( [ "serve", "cli-model", "--config", cli_config_file_with_model, ] ) assert args.tensor_parallel_size == 2 assert args.trust_remote_code is True assert args.port == 12312 @pytest.mark.parametrize("input", [(), ("abc",), (None,), (None, bool, [1, 2, 3])]) def test_sha256(input: tuple): digest = sha256(input) assert digest is not None assert isinstance(digest, bytes) assert digest != b"" input_bytes = pickle.dumps(input, protocol=pickle.HIGHEST_PROTOCOL) assert digest == hashlib.sha256(input_bytes).digest() # hashing again, returns the same value assert digest == sha256(input) # hashing different input, returns different value assert digest != sha256(input + (1,)) @pytest.mark.parametrize( "path,expected", [ ("ipc://some_path", ("ipc", "some_path", "")), ("tcp://127.0.0.1:5555", ("tcp", "127.0.0.1", "5555")), ("tcp://[::1]:5555", ("tcp", "::1", "5555")), # IPv6 address ("inproc://some_identifier", ("inproc", "some_identifier", "")), ], ) def test_split_zmq_path(path, expected): assert split_zmq_path(path) == expected @pytest.mark.parametrize( "invalid_path", [ "invalid_path", # Missing scheme "tcp://127.0.0.1", # Missing port "tcp://[::1]", # Missing port for IPv6 "tcp://:5555", # Missing host ], ) def test_split_zmq_path_invalid(invalid_path): with pytest.raises(ValueError): split_zmq_path(invalid_path) def test_make_zmq_socket_ipv6(): # Check if IPv6 is supported by trying to create an IPv6 socket try: sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) sock.close() except socket.error: pytest.skip("IPv6 is not supported on this system") ctx = zmq.Context() ipv6_path = "tcp://[::]:5555" # IPv6 loopback address socket_type = zmq.REP # Example socket type # Create the socket zsock: zmq.Socket = make_zmq_socket(ctx, ipv6_path, socket_type) # Verify that the IPV6 option is set assert zsock.getsockopt(zmq.IPV6) == 1, ( "IPV6 option should be enabled for IPv6 addresses" ) # Clean up zsock.close() ctx.term() def test_make_zmq_path(): assert make_zmq_path("tcp", "127.0.0.1", "5555") == "tcp://127.0.0.1:5555" assert make_zmq_path("tcp", "::1", "5555") == "tcp://[::1]:5555" def test_get_tcp_uri(): assert get_tcp_uri("127.0.0.1", 5555) == "tcp://127.0.0.1:5555" assert get_tcp_uri("::1", 5555) == "tcp://[::1]:5555" def test_split_host_port(): # valid ipv4 assert split_host_port("127.0.0.1:5555") == ("127.0.0.1", 5555) # invalid ipv4 with pytest.raises(ValueError): # multi colon assert split_host_port("127.0.0.1::5555") with pytest.raises(ValueError): # tailing colon assert split_host_port("127.0.0.1:5555:") with pytest.raises(ValueError): # no colon assert split_host_port("127.0.0.15555") with pytest.raises(ValueError): # none int port assert split_host_port("127.0.0.1:5555a") # valid ipv6 assert split_host_port("[::1]:5555") == ("::1", 5555) # invalid ipv6 with pytest.raises(ValueError): # multi colon assert split_host_port("[::1]::5555") with pytest.raises(IndexError): # no colon assert split_host_port("[::1]5555") with pytest.raises(ValueError): # none int port assert split_host_port("[::1]:5555a") def test_join_host_port(): assert join_host_port("127.0.0.1", 5555) == "127.0.0.1:5555" assert join_host_port("::1", 5555) == "[::1]:5555" def test_convert_ids_list_to_tokens(): tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-1.5B-Instruct") token_ids = tokenizer.encode("Hello, world!") # token_ids = [9707, 11, 1879, 0] assert tokenizer.convert_ids_to_tokens(token_ids) == ["Hello", ",", "Ġworld", "!"] tokens = convert_ids_list_to_tokens(tokenizer, token_ids) assert tokens == ["Hello", ",", " world", "!"] def test_current_stream_multithread(): import threading if not torch.cuda.is_available(): pytest.skip("CUDA not available") main_default_stream = torch.cuda.current_stream() child_stream = torch.cuda.Stream() thread_stream_ready = threading.Event() thread_can_exit = threading.Event() def child_thread_func(): with torch.cuda.stream(child_stream): thread_stream_ready.set() thread_can_exit.wait(timeout=10) child_thread = threading.Thread(target=child_thread_func) child_thread.start() try: assert thread_stream_ready.wait(timeout=5), ( "Child thread failed to enter stream context in time" ) main_current_stream = current_stream() assert main_current_stream != child_stream, ( "Main thread's current_stream was contaminated by child thread" ) assert main_current_stream == main_default_stream, ( "Main thread's current_stream is not the default stream" ) # Notify child thread it can exit thread_can_exit.set() finally: # Ensure child thread exits properly child_thread.join(timeout=5) if child_thread.is_alive(): pytest.fail("Child thread failed to exit properly") def test_load_config_file(tmp_path): # Define the configuration data config_data = { "enable-logging": True, "list-arg": ["item1", "item2"], "port": 12323, "tensor-parallel-size": 4, } # Write the configuration data to a temporary YAML file config_file_path = tmp_path / "config.yaml" with open(config_file_path, "w") as config_file: yaml.dump(config_data, config_file) # Initialize the parser parser = FlexibleArgumentParser() # Call the function with the temporary file path processed_args = parser.load_config_file(str(config_file_path)) # Expected output expected_args = [ "--enable-logging", "--list-arg", "item1", "item2", "--port", "12323", "--tensor-parallel-size", "4", ] # Assert that the processed arguments match the expected output assert processed_args == expected_args os.remove(str(config_file_path)) def test_unique_filepath(): temp_dir = tempfile.mkdtemp() path_fn = lambda i: Path(temp_dir) / f"file_{i}.txt" paths = set() for i in range(10): path = unique_filepath(path_fn) path.write_text("test") paths.add(path) assert len(paths) == 10 assert len(list(Path(temp_dir).glob("*.txt"))) == 10 def test_flat_product(): # Check regular itertools.product behavior result1 = list(flat_product([1, 2, 3], ["a", "b"])) assert result1 == [ (1, "a"), (1, "b"), (2, "a"), (2, "b"), (3, "a"), (3, "b"), ] # check that the tuples get flattened result2 = list(flat_product([(1, 2), (3, 4)], ["a", "b"], [(5, 6)])) assert result2 == [ (1, 2, "a", 5, 6), (1, 2, "b", 5, 6), (3, 4, "a", 5, 6), (3, 4, "b", 5, 6), ]