from typing import List import pytest import vllm from vllm.assets.image import ImageAsset from vllm.lora.request import LoRARequest from vllm.platforms import current_platform MODEL_PATH = "Qwen/Qwen2-VL-7B-Instruct" PROMPT_TEMPLATE = ( "<|im_start|>system\nYou are a helpful assistant.<|im_end|>" "\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>" "What is in the image?<|im_end|>\n" "<|im_start|>assistant\n") IMAGE_ASSETS = [ ImageAsset("stop_sign"), ImageAsset("cherry_blossom"), ] # After fine-tuning with LoRA, all generated content should start begin `A`. EXPECTED_OUTPUT = [ "A stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501 "A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501 ] def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]: sampling_params = vllm.SamplingParams( temperature=0, max_tokens=5, ) inputs = [{ "prompt": PROMPT_TEMPLATE, "multi_modal_data": { "image": asset.pil_image }, } for asset in IMAGE_ASSETS] outputs = llm.generate( inputs, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None, ) # Print the outputs. generated_texts: List[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text.strip() generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") return generated_texts @pytest.mark.xfail(current_platform.is_rocm(), reason="Qwen2-VL dependency xformers incompatible with ROCm" ) def test_qwen2vl_lora(qwen2vl_lora_files): llm = vllm.LLM( MODEL_PATH, max_num_seqs=2, enable_lora=True, max_loras=2, max_lora_rank=16, trust_remote_code=True, mm_processor_kwargs={ "min_pixels": 28 * 28, "max_pixels": 1280 * 28 * 28, }, max_model_len=4096, ) output1 = do_sample(llm, qwen2vl_lora_files, lora_id=1) for i in range(len(EXPECTED_OUTPUT)): assert EXPECTED_OUTPUT[i].startswith(output1[i])