# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import requests import torch import torch.nn.functional as F from vllm.entrypoints.openai.protocol import RerankResponse from ...utils import RemoteOpenAIServer MODEL_NAME = "BAAI/bge-reranker-base" DTYPE = "bfloat16" @pytest.fixture(scope="module") def server(): args = ["--enforce-eager", "--max-model-len", "100", "--dtype", DTYPE] with RemoteOpenAIServer(MODEL_NAME, args) as remote_server: yield remote_server @pytest.mark.parametrize("model_name", [MODEL_NAME]) def test_rerank_texts(server: RemoteOpenAIServer, model_name: str): query = "What is the capital of France?" documents = [ "The capital of Brazil is Brasilia.", "The capital of France is Paris." ] rerank_response = requests.post(server.url_for("rerank"), json={ "model": model_name, "query": query, "documents": documents, }) rerank_response.raise_for_status() rerank = RerankResponse.model_validate(rerank_response.json()) assert rerank.id is not None assert rerank.results is not None assert len(rerank.results) == 2 assert rerank.results[0].relevance_score >= 0.9 assert rerank.results[1].relevance_score <= 0.01 @pytest.mark.parametrize("model_name", [MODEL_NAME]) def test_top_n(server: RemoteOpenAIServer, model_name: str): query = "What is the capital of France?" documents = [ "The capital of Brazil is Brasilia.", "The capital of France is Paris.", "Cross-encoder models are neat" ] rerank_response = requests.post(server.url_for("rerank"), json={ "model": model_name, "query": query, "documents": documents, "top_n": 2 }) rerank_response.raise_for_status() rerank = RerankResponse.model_validate(rerank_response.json()) assert rerank.id is not None assert rerank.results is not None assert len(rerank.results) == 2 assert rerank.results[0].relevance_score >= 0.9 assert rerank.results[1].relevance_score <= 0.01 @pytest.mark.parametrize("model_name", [MODEL_NAME]) def test_rerank_max_model_len(server: RemoteOpenAIServer, model_name: str): query = "What is the capital of France?" * 100 documents = [ "The capital of Brazil is Brasilia.", "The capital of France is Paris." ] rerank_response = requests.post(server.url_for("rerank"), json={ "model": model_name, "query": query, "documents": documents }) assert rerank_response.status_code == 400 # Assert just a small fragments of the response assert "Please reduce the length of the input." in \ rerank_response.text def test_invocations(server: RemoteOpenAIServer): query = "What is the capital of France?" documents = [ "The capital of Brazil is Brasilia.", "The capital of France is Paris." ] request_args = { "model": MODEL_NAME, "query": query, "documents": documents, } rerank_response = requests.post(server.url_for("rerank"), json=request_args) rerank_response.raise_for_status() invocation_response = requests.post(server.url_for("invocations"), json=request_args) invocation_response.raise_for_status() rerank_output = rerank_response.json() invocation_output = invocation_response.json() assert rerank_output.keys() == invocation_output.keys() for rerank_result, invocations_result in zip(rerank_output["results"], invocation_output["results"]): assert rerank_result.keys() == invocations_result.keys() assert rerank_result["relevance_score"] == pytest.approx( invocations_result["relevance_score"], rel=0.05) # TODO: reset this tolerance to 0.01 once we find # an alternative to flash_attn with bfloat16 @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_activation(server: RemoteOpenAIServer, model_name: str): async def get_outputs(activation): query = "What is the capital of France?" documents = [ "The capital of Brazil is Brasilia.", "The capital of France is Paris." ] response = requests.post(server.url_for("rerank"), json={ "model": model_name, "query": query, "documents": documents, "activation": activation }) outputs = response.json() return torch.tensor([x['relevance_score'] for x in outputs["results"]]) default = await get_outputs(activation=None) w_activation = await get_outputs(activation=True) wo_activation = await get_outputs(activation=False) assert torch.allclose(default, w_activation, atol=1e-2), "Default should use activation." assert not torch.allclose( w_activation, wo_activation, atol=1e-2), "wo_activation should not use activation." assert torch.allclose( F.sigmoid(wo_activation), w_activation, atol=1e-2 ), "w_activation should be close to activation(wo_activation)."