# SPDX-License-Identifier: Apache-2.0 # Adapted from # https://huggingface.co/inceptionai/jais-30b-chat-v3/blob/main/modeling_jais.py # Copyright 2023 The vLLM team. # Copyright 2023 the Jais authors and HuggingFace Inc. team. All rights # reserved. # Copyright 2023 Cerebras Systems. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Jais model compatible with HuggingFace weights.""" import math from typing import Iterable, Optional, Set, Tuple, Union import torch from torch import nn from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) from vllm.model_executor.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors from vllm.transformers_utils.configs import JAISConfig from .interfaces import SupportsPP from .utils import (is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) class SwiGLUActivation(nn.Module): def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor: return x1 * nn.functional.silu(x2) def _get_alibi_slopes(n): def get_slopes_power_of_2(n): start = 2**(-(2**-(math.log2(n) - 3))) ratio = start return [start * ratio**i for i in range(n)] if math.log2(n).is_integer(): return get_slopes_power_of_2(n) else: closest_power_of_2 = 2**math.floor(math.log2(n)) return (get_slopes_power_of_2(closest_power_of_2) + _get_alibi_slopes( 2 * closest_power_of_2)[0::2][:n - closest_power_of_2]) class JAISAttention(nn.Module): def __init__( self, config: JAISConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.hidden_size = config.hidden_size total_num_heads = config.num_attention_heads tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) assert total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = total_num_heads // tensor_model_parallel_world_size self.head_dim = self.hidden_size // total_num_heads if hasattr(config, "scale_qk_dot_by_d"): config.mup_scale_qk_dot_by_d = config.scale_qk_dot_by_d self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5 self.scale = self.head_dim**-self.attn_scale_power self.c_attn = QKVParallelLinear( self.hidden_size, self.head_dim, total_num_heads, bias=True, quant_config=quant_config, ) self.c_proj = RowParallelLinear( self.hidden_size, self.hidden_size, bias=True, quant_config=quant_config, ) tp_rank = get_tensor_model_parallel_rank() head_start = tp_rank * self.num_heads head_end = (tp_rank + 1) * self.num_heads alibi_slopes = _get_alibi_slopes(total_num_heads) alibi_slopes = alibi_slopes[head_start:head_end] self.attn = Attention(self.num_heads, self.head_dim, scale=self.scale, alibi_slopes=alibi_slopes, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") def forward( self, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) attn_output = self.attn(q, k, v) attn_output, _ = self.c_proj(attn_output) return attn_output class JAISMLP(nn.Module): def __init__( self, intermediate_size: int, config: JAISConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() hidden_size = config.hidden_size self.swiglu = config.activation_function == "swiglu" self.c_fc = ColumnParallelLinear( hidden_size, intermediate_size, bias=True, quant_config=quant_config, ) self.c_fc2 = (ColumnParallelLinear( hidden_size, intermediate_size, bias=True, quant_config=quant_config, ) if self.swiglu else None) self.c_proj = RowParallelLinear( intermediate_size, hidden_size, bias=True, quant_config=quant_config, ) self.act = SwiGLUActivation() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.swiglu: hidden_states2, _ = self.c_fc2(hidden_states) hidden_states, _ = self.c_fc(hidden_states) hidden_states = (self.act(hidden_states, hidden_states2) if self.swiglu else self.act(hidden_states)) hidden_states, _ = self.c_proj(hidden_states) return hidden_states class JAISBlock(nn.Module): def __init__( self, config: JAISConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() hidden_size = config.hidden_size inner_dim = (config.n_inner if config.n_inner is not None else 4 * hidden_size) self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = JAISAttention(config, cache_config, quant_config, prefix=f"{prefix}.attn") self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = JAISMLP(inner_dim, config, quant_config) def forward( self, hidden_states: torch.Tensor, ) -> torch.Tensor: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_output = self.attn(hidden_states=hidden_states, ) # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states return hidden_states @support_torch_compile class JAISModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config assert not config.add_cross_attention assert not config.scale_attn_by_inverse_layer_idx assert not config.reorder_and_upcast_attn self.embed_dim = config.hidden_size self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim) self.wpe = (nn.Embedding(config.max_position_embeddings, self.embed_dim) if config.position_embedding_type != "alibi" else None) if hasattr(config, "embeddings_scale"): self.embeddings_scale = config.embeddings_scale else: self.embeddings_scale = config.mup_embeddings_scale self.start_layer, self.end_layer, self.h = make_layers( config.num_hidden_layers, lambda prefix: JAISBlock(config=config, cache_config=cache_config, quant_config=quant_config, prefix=prefix), prefix=f"{prefix}.h", ) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory(["hidden_states"], config.n_embd)) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.wte(input_ids) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[IntermediateTensors, torch.Tensor]: if get_pp_group().is_first_rank: if inputs_embeds is None: inputs_embeds = self.get_input_embeddings(input_ids) if self.wpe is not None: position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds else: hidden_states = inputs_embeds hidden_states *= torch.tensor(float(self.embeddings_scale), dtype=hidden_states.dtype) else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] for layer in self.h[self.start_layer:self.end_layer]: hidden_states = layer(hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({"hidden_states": hidden_states}) hidden_states = self.ln_f(hidden_states) return hidden_states class JAISLMHeadModel(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.transformer = JAISModel(vllm_config=vllm_config, prefix=maybe_prefix( prefix, "transformer")) if self.config.tie_word_embeddings: self.lm_head = self.transformer.wte else: self.lm_head = ParallelLMHead(self.config.vocab_size, self.config.hidden_size) if hasattr(config, "width_scale"): self.output_logits_scale = config.width_scale else: self.output_logits_scale = (config.mup_output_alpha * config.mup_width_scale) self.logits_processor = LogitsProcessor(vocab_size=config.vocab_size, scale=self.output_logits_scale) self.make_empty_intermediate_tensors = ( self.transformer.make_empty_intermediate_tensors) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.transformer.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[IntermediateTensors, torch.Tensor]: hidden_states = self.transformer(input_ids, positions, intermediate_tensors, inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: Set[str] = set() for name, loaded_weight in weights: if "lm_head.weight" in name: # GPT-2 ties the weights of the embedding layer and the final # linear layer. continue if ".attn.bias" in name or ".attn.masked_bias" in name: # Skip attention mask. # NOTE: "c_attn.bias" should not be skipped. continue if "relative_pe" in name: continue if not name.startswith("transformer."): name = "transformer." + name if is_pp_missing_parameter(name, self): continue param = params_dict[name] # The HF's GPT-2 implementation uses Conv1D instead of Linear. # Because of this, we need to transpose the weights. # Note(zhuohan): the logic below might break quantized models. for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]: if conv1d_weight_name not in name: continue if not name.endswith(".weight"): continue loaded_weight = loaded_weight.t() weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params