# --8<-- [start:installation] vLLM initially supports basic model inference and serving on Intel GPU platform. !!! warning There are no pre-built wheels for this device, so you need build vLLM from source. Or you can use pre-built images which are based on vLLM released versions. # --8<-- [end:installation] # --8<-- [start:requirements] - Supported Hardware: Intel Data Center GPU, Intel ARC GPU - OneAPI requirements: oneAPI 2025.1 - Python: 3.12 !!! warning The provided IPEX whl is Python3.12 specific so this version is a MUST. # --8<-- [end:requirements] # --8<-- [start:set-up-using-python] There is no extra information on creating a new Python environment for this device. # --8<-- [end:set-up-using-python] # --8<-- [start:pre-built-wheels] Currently, there are no pre-built XPU wheels. # --8<-- [end:pre-built-wheels] # --8<-- [start:build-wheel-from-source] - First, install required [driver](https://dgpu-docs.intel.com/driver/installation.html#installing-gpu-drivers) and [Intel OneAPI](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) 2025.1 or later. - Second, install Python packages for vLLM XPU backend building: ```bash git clone https://github.com/vllm-project/vllm.git cd vllm pip install --upgrade pip pip install -v -r requirements/xpu.txt ``` - Then, build and install vLLM XPU backend: ```bash VLLM_TARGET_DEVICE=xpu python setup.py install ``` # --8<-- [end:build-wheel-from-source] # --8<-- [start:pre-built-images] Currently, we release prebuilt XPU images at docker [hub](https://hub.docker.com/r/intel/vllm/tags) based on vLLM released version. For more information, please refer release [note](https://github.com/intel/ai-containers/blob/main/vllm). # --8<-- [end:pre-built-images] # --8<-- [start:build-image-from-source] ```bash docker build -f docker/Dockerfile.xpu -t vllm-xpu-env --shm-size=4g . docker run -it \ --rm \ --network=host \ --device /dev/dri:/dev/dri \ -v /dev/dri/by-path:/dev/dri/by-path \ --ipc=host \ --privileged \ vllm-xpu-env ``` # --8<-- [end:build-image-from-source] # --8<-- [start:supported-features] XPU platform supports **tensor parallel** inference/serving and also supports **pipeline parallel** as a beta feature for online serving. For **pipeline parallel**, we support it on single node with mp as the backend. For example, a reference execution like following: ```bash vllm serve facebook/opt-13b \ --dtype=bfloat16 \ --max_model_len=1024 \ --distributed-executor-backend=mp \ --pipeline-parallel-size=2 \ -tp=8 ``` By default, a ray instance will be launched automatically if no existing one is detected in the system, with `num-gpus` equals to `parallel_config.world_size`. We recommend properly starting a ray cluster before execution, referring to the [examples/online_serving/run_cluster.sh](https://github.com/vllm-project/vllm/blob/main/examples/online_serving/run_cluster.sh) helper script. # --8<-- [end:supported-features] # --8<-- [start:distributed-backend] XPU platform uses **torch-ccl** for torch<2.8 and **xccl** for torch>=2.8 as distributed backend, since torch 2.8 supports **xccl** as built-in backend for XPU. # --8<-- [end:distributed-backend]