# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/ROCm/vllm/blob/cea7419f151cc50293a05b7fac8547f8f887c9f6/vllm/model_executor/models/grok1.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Grok1 model.""" from collections.abc import Iterable from itertools import islice import torch import torch.nn.functional as F from torch import nn from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( QKVParallelLinear, ReplicatedLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name, ) from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP from .utils import ( AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) # Default Grok1-specific constants, overridden by config values if present DEFAULT_ATTN_OUTPUT_MULTIPLIER = 0.08838834764831845 DEFAULT_OUTPUT_MULTIPLIER_SCALE = 0.5773502691896257 DEFAULT_EMBEDDING_MULTIPLIER_SCALE = 78.38367176906169 class Grok1MoE(nn.Module): """A tensor-parallel MoE implementation for Grok1 that shards each expert across all ranks. Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks. """ def __init__( self, num_experts: int, top_k: int, hidden_size: int, intermediate_size: int, params_dtype: torch.dtype | None = None, quant_config: QuantizationConfig | None = None, tp_size: int | None = None, prefix: str = "", ): super().__init__() self.hidden_size = hidden_size # Gate always runs at half / full precision for now. self.gate = ReplicatedLinear( hidden_size, num_experts, bias=False, params_dtype=params_dtype, quant_config=None, prefix=f"{prefix}.gate", ) self.experts = FusedMoE( num_experts=num_experts, top_k=top_k, hidden_size=hidden_size, intermediate_size=intermediate_size, params_dtype=params_dtype, reduce_results=True, renormalize=True, quant_config=quant_config, tp_size=tp_size, activation="gelu", prefix=f"{prefix}.experts", ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # NOTE: hidden_states can have either 1D or 2D shape. orig_shape = hidden_states.shape hidden_states = hidden_states.view(-1, self.hidden_size) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) router_logits = 30.0 * F.tanh(router_logits / 30.0) final_hidden_states = self.experts(hidden_states, router_logits) return final_hidden_states.view(orig_shape) class Grok1Attention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, max_position: int = 4096 * 32, rope_theta: float = 10000, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", config=None, # Added config parameter ) -> None: super().__init__() self.hidden_size = hidden_size self.config = config # Store config reference tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position, base=int(self.rope_theta), is_neox_style=True, ) attn_logits_soft_cap = max(getattr(config, "attn_logit_softcapping", 30.0), 0.0) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, logits_soft_cap=attn_logits_soft_cap, prefix=f"{prefix}.attn", ) self.attn_multiplier = ( getattr(self.config, "attn_output_multiplier", 1.0) if self.config else 1.0 ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.o_proj(attn_output) output *= self.attn_multiplier return output class Grok1DecoderLayer(nn.Module): def __init__( self, config, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size # Check for fp8 quantization self.use_fp8 = False if quant_config is not None: self.use_fp8 = getattr(quant_config, "is_fp8_w8a8", lambda: False)() if not self.use_fp8 and hasattr(quant_config, "is_fp8"): self.use_fp8 = quant_config.is_fp8 # Requires transformers > 4.32.0 # Default rope_theta value if not in config rope_theta = 10000 self.attn = Grok1Attention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", config=config, ) # Pass config to Grok1Attention # Grok1 uses "num_experts" in its config num_experts = getattr(config, "num_experts", 8) num_experts_per_tok = getattr(config, "num_experts_per_tok", 2) self.moe_block = Grok1MoE( num_experts=num_experts, top_k=num_experts_per_tok, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, quant_config=quant_config, prefix=f"{prefix}.moe_block", ) self.pre_attn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_moe_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_moe_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.pre_attn_norm(hidden_states) else: hidden_states, residual = self.pre_attn_norm(hidden_states, residual) hidden_states = self.attn( positions=positions, hidden_states=hidden_states, ) # Post attention normalization hidden_states = self.post_attn_norm(hidden_states) # MoE block with normalization hidden_states, residual = self.pre_moe_norm(hidden_states, residual) hidden_states = self.moe_block(hidden_states) hidden_states = self.post_moe_norm(hidden_states) return hidden_states, residual @support_torch_compile class Grok1Model(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embedding_multiplier_scale = getattr( config, "embedding_multiplier_scale", DEFAULT_EMBEDDING_MULTIPLIER_SCALE ) self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, quant_config=quant_config, ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: Grok1DecoderLayer( config, cache_config, quant_config=quant_config, prefix=prefix ), prefix=f"{prefix}.layers", ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) hidden_states = hidden_states * self.embedding_multiplier_scale return hidden_states def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states, residual = layer(positions, hidden_states, residual) if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: # Map Grok1's unique expert parameter names to standard names # Grok1 uses "num_experts" in its config num_experts = getattr(self.config, "num_experts", 8) return FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="linear", # Grok1 specific ckpt_down_proj_name="linear_1", # Grok1 specific ckpt_up_proj_name="linear_v", # Grok1 specific num_experts=num_experts, ) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() expert_params_mapping = self.get_expert_mapping() for name, loaded_weight in weights: if self.quant_config is not None and ( scale_name := self.quant_config.get_cache_scale(name) ): # Loading kv cache quantization scales param = params_dict[scale_name] weight_loader = getattr(param, "weight_loader", default_weight_loader) loaded_weight = ( loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0] ) weight_loader(param, loaded_weight) loaded_params.add(scale_name) continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if ( name.endswith(".bias") or name.endswith("_bias") ) and name not in params_dict: continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue if name.endswith("scale"): # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue if ( name.endswith(".bias") or name.endswith("_bias") ) and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader( param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id, ) break else: # Skip loading extra bias for GPTQ models. if ( name.endswith(".bias") or name.endswith("_bias") ) and name not in params_dict: continue # Skip layers on other devices. if is_pp_missing_parameter(name, self): continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue # Handle Grok1-specific norm.scale naming if "norm.scale" in name: name = name.replace("scale", "weight") param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class Grok1ForCausalLM(nn.Module, SupportsLoRA, SupportsPP): fall_back_to_pt_during_load = False packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.model = Grok1Model( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) if self.config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight self.output_multiplier_scale = getattr( config, "output_multiplier_scale", DEFAULT_OUTPUT_MULTIPLIER_SCALE ) self.logits_processor = LogitsProcessor( config.vocab_size, scale=self.output_multiplier_scale ) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: hidden_states = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: # Skip lm_head when tie_word_embeddings is True skip_prefixes = ["lm_head"] if self.config.tie_word_embeddings else None loader = AutoWeightsLoader( self, skip_prefixes=skip_prefixes, ) return loader.load_weights(weights) def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: return self.model.get_expert_mapping()