# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # adapted from https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_internvl_chat.py # -------------------------------------------------------- # InternVL # Copyright (c) 2023 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- from abc import ABC from collections.abc import Iterable import torch import torch.nn as nn import torchvision.transforms as T from PIL import Image from transformers import AutoModel, PretrainedConfig from transformers.image_processing_utils_fast import BaseImageProcessorFast from vllm.config import VllmConfig from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.quantization.awq import AWQConfig from vllm.model_executor.models.internvl import ( BaseInternVLDummyInputsBuilder, BaseInternVLMultiModalProcessor, BaseInternVLProcessingInfo, InternVLImageEmbeddingInputs, InternVLImageInputs, InternVLImagePixelInputs, InternVLProcessor, ) from vllm.model_executor.models.module_mapping import MultiModelKeys from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.image import convert_image_mode from vllm.multimodal.processing import PromptUpdateDetails from vllm.sequence import IntermediateTensors from vllm.transformers_utils.processor import cached_image_processor_from_config from vllm.transformers_utils.tokenizer import AnyTokenizer from .interfaces import ( MultiModalEmbeddings, SupportsLoRA, SupportsMultiModal, SupportsPP, ) from .utils import AutoWeightsLoader, init_vllm_registered_model, maybe_prefix IMG_START = "" IMG_END = "" IMG_CONTEXT = "" def build_transform(input_size: int): return T.Compose( [ T.Lambda(lambda img: convert_image_mode(img, "RGB")), T.Resize( (input_size, input_size), interpolation=T.InterpolationMode.BICUBIC ), T.ToTensor(), ] ) # adapted from https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1 def find_closest_aspect_ratio( aspect_ratio: float, target_ratios: list[tuple[int, int]], *, width: int, height: int, image_size: int, ) -> tuple[int, int]: best_factor = float("-inf") best_ratio = (1, 1) area = width * height for rw, rh in target_ratios: target_aspect_ratio = rw / rh size_factor = min((rw * rh * image_size * image_size) / area, 0.6) ratio_closeness = min( target_aspect_ratio / aspect_ratio, aspect_ratio / target_aspect_ratio ) factor = size_factor * ratio_closeness if factor > best_factor: best_factor = factor best_ratio = (rw, rh) return best_ratio def calculate_nemotron_vl_targets( *, orig_width: int, orig_height: int, target_ratios: list[tuple[int, int]], image_size: int, use_thumbnail: bool, ) -> tuple[int, int, int]: aspect_ratio = orig_width / orig_height # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, width=orig_width, height=orig_height, image_size=image_size, ) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # add thumbnail image if num_blocks != 1 if use_thumbnail and blocks != 1: blocks += 1 return blocks, target_width, target_height def dynamic_preprocess_nemotron_vl( image: Image.Image, *, target_ratios: list[tuple[int, int]], image_size: int, use_thumbnail: bool, ) -> list[Image.Image]: orig_width, orig_height = image.size # calculate the number of blocks without thumbnail blocks, target_width, target_height = calculate_nemotron_vl_targets( orig_width=orig_width, orig_height=orig_height, target_ratios=target_ratios, image_size=image_size, use_thumbnail=False, ) # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size, ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def get_nemotron_vl_target_ratios( min_num: int, max_num: int, ) -> list[tuple[int, int]]: target_ratios = { (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if min_num <= i * j <= max_num } return sorted(target_ratios, key=lambda x: x[0] * x[1]) def image_to_pixel_values_nemotron_vl( image: Image.Image, *, input_size: int, min_num: int, max_num: int, use_thumbnail: bool, ) -> torch.Tensor: target_ratios = get_nemotron_vl_target_ratios(min_num, max_num) transform = build_transform(input_size=input_size) images = dynamic_preprocess_nemotron_vl( image, target_ratios=target_ratios, image_size=input_size, use_thumbnail=use_thumbnail, ) pixel_values = torch.stack([transform(image) for image in images]) return pixel_values class NemotronVLProcessor(InternVLProcessor): def __init__( self, config: PretrainedConfig, tokenizer: AnyTokenizer, image_processor: BaseImageProcessorFast, *, min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, ) -> None: ABC.__init__(self) self.config = config self.tokenizer = tokenizer self.image_processor = image_processor image_size: int = config.force_image_size patch_size: int = config.patch_size if min_dynamic_patch is None: min_dynamic_patch = 1 assert isinstance(min_dynamic_patch, int) if max_dynamic_patch is None: max_dynamic_patch = self.image_processor.max_num_tiles assert isinstance(max_dynamic_patch, int) if dynamic_image_size is None: dynamic_image_size = True assert isinstance(dynamic_image_size, bool) self.num_image_token = int( (image_size // patch_size) ** 2 * (config.downsample_ratio**2) ) self.image_size = image_size self.min_dynamic_patch = min_dynamic_patch self.max_dynamic_patch = max_dynamic_patch self.dynamic_image_size = dynamic_image_size self.use_thumbnail: bool = self.image_processor.use_thumbnail @property def image_token_id(self) -> int: return self.tokenizer.get_vocab()[IMG_CONTEXT] def get_num_image_tokens( self, *, image_width: int, image_height: int, ) -> int: target_ratios = self.resolve_target_ratios( use_thumbnail=False, # Applied in calculate_targets ) num_patches, _, _ = calculate_nemotron_vl_targets( orig_width=image_width, orig_height=image_height, image_size=self.image_size, target_ratios=target_ratios, use_thumbnail=self.use_thumbnail, ) return num_patches * self.num_image_token def _images_to_pixel_values_lst( self, images: list[Image.Image], min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, ) -> list[torch.Tensor]: min_num, max_num = self.resolve_min_max_num( min_dynamic_patch=min_dynamic_patch, max_dynamic_patch=max_dynamic_patch, dynamic_image_size=dynamic_image_size, use_thumbnail=False, # Applied in image_to_pixel_values ) return [ image_to_pixel_values_nemotron_vl( image, input_size=self.image_size, min_num=min_num, max_num=max_num, use_thumbnail=self.use_thumbnail, ) for image in images ] def _preprocess_image( self, text: list[str], images: list[Image.Image], min_dynamic_patch: int | None = None, max_dynamic_patch: int | None = None, dynamic_image_size: bool | None = None, ) -> tuple[list[str], dict[str, torch.Tensor]]: if len(images) == 0: image_inputs = {} else: pixel_values_lst = self._images_to_pixel_values_lst( images, min_dynamic_patch=min_dynamic_patch, max_dynamic_patch=max_dynamic_patch, dynamic_image_size=dynamic_image_size, ) image_inputs = { "pixel_values_flat": torch.cat(pixel_values_lst), "image_num_patches": torch.tensor( [len(item) for item in pixel_values_lst] ), } for pixel_values in pixel_values_lst: num_patches = pixel_values.shape[0] feature_size = num_patches * self.num_image_token image_repl = self.get_image_repl(feature_size, num_patches) NVL_IMAGE_CONTEXT = image_repl.full.replace( "", "" ) text = [t.replace("", NVL_IMAGE_CONTEXT, 1) for t in text] text = [t.replace("", IMG_CONTEXT) for t in text] return text, image_inputs def get_image_repl( self, feature_size: int, num_patches: int | None, ) -> PromptUpdateDetails[str]: repl_features = IMG_CONTEXT * feature_size repl_full = IMG_START + repl_features + IMG_END return PromptUpdateDetails.select_text(repl_full, IMG_CONTEXT) class NemotronVLProcessingInfo(BaseInternVLProcessingInfo): """Processing info for Nemotron VL models.""" def get_hf_processor(self, **kwargs: object) -> NemotronVLProcessor: return self.ctx.init_processor( NemotronVLProcessor, config=self.get_hf_config(), tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), **kwargs, ) def get_image_processor(self, **kwargs: object): return cached_image_processor_from_config( self.ctx.model_config, **kwargs, ) @MULTIMODAL_REGISTRY.register_processor( BaseInternVLMultiModalProcessor[NemotronVLProcessingInfo], info=NemotronVLProcessingInfo, dummy_inputs=BaseInternVLDummyInputsBuilder[NemotronVLProcessingInfo], ) class LlamaNemotronVLChatModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA): merge_by_field_config = True @classmethod def get_placeholder_str(cls, modality: str, i: int) -> str | None: if modality.startswith("image"): return "" raise ValueError("Only image modality is supported") def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config self._patch_quant_config(config, quant_config) image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.num_image_token = int( (image_size // patch_size) ** 2 * (config.downsample_ratio**2) ) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version self.llm_arch_name = config.text_config.architectures[0] self.vision_model = self._init_vision_model( config, quant_config=quant_config, prefix=maybe_prefix(prefix, "vision_model"), ) self.language_model = init_vllm_registered_model( vllm_config=vllm_config, hf_config=config.text_config, prefix=maybe_prefix(prefix, "language_model"), ) self.mlp1 = self._init_mlp1(config) self.img_context_token_id = None self.visual_token_mask = None self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors ) def _patch_quant_config( self, config: PretrainedConfig, quant_config: QuantizationConfig ): # the awq models from OpenGVLab missing `modules_to_not_convert` # patch the quant_config to add `modules_to_not_convert` back if isinstance(quant_config, AWQConfig): text_config = config.text_config llm_quant_config = getattr(text_config, "quantization_config", None) if (not quant_config.modules_to_not_convert) and ( llm_quant_config is not None ): quant_config.modules_to_not_convert.append("vision_model") def _init_vision_model( self, config: PretrainedConfig, quant_config: QuantizationConfig | None, *, prefix: str, ): return AutoModel.from_config(config.vision_config, trust_remote_code=True) def _init_mlp1(self, config: PretrainedConfig) -> nn.Module: vit_hidden_size = config.vit_hidden_size vision_projection_hidden_size = config.projector_hidden_size llm_hidden_size = config.text_config.hidden_size return nn.Sequential( nn.LayerNorm( vit_hidden_size * int(1 / self.downsample_ratio) ** 2, bias=True ), nn.Linear( vit_hidden_size * int(1 / self.downsample_ratio) ** 2, vision_projection_hidden_size, bias=True, ), nn.GELU(), nn.Linear(vision_projection_hidden_size, llm_hidden_size), ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() x = x.view( n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor)), ) if self.ps_version == "v1": pass else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor: # https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1/blob/main/modeling.py#L177 vit_embeds = self.vision_model(x=pixel_values).features vit_embeds = vit_embeds.to(dtype=torch.bfloat16) h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds) return vit_embeds def _parse_and_validate_image_input( self, **kwargs: object ) -> InternVLImageInputs | None: pixel_values_flat = kwargs.pop("pixel_values_flat", None) image_num_patches = kwargs.pop("image_num_patches", None) image_embeds = kwargs.pop("image_embeds", None) if pixel_values_flat is None and image_embeds is None: return None if image_embeds is not None: return InternVLImageEmbeddingInputs( type="image_embeds", data=image_embeds, ) image_token_id = kwargs["image_token_id"] if isinstance(image_token_id, torch.Tensor): image_token_id = image_token_id.flatten().unique().item() assert isinstance(image_token_id, int) self.img_context_token_id = image_token_id if pixel_values_flat is not None: return InternVLImagePixelInputs( type="pixel_values", pixel_values_flat=pixel_values_flat, num_patches=image_num_patches, resolve_bindings={ "h": self.config.force_image_size, "w": self.config.force_image_size, }, ) raise AssertionError("This line should be unreachable.") def _process_image_input( self, image_input: InternVLImageInputs, ) -> tuple[torch.Tensor, ...]: if image_input["type"] == "image_embeds": return image_input["data"] assert self.vision_model is not None image_embeds = self.extract_feature(image_input["pixel_values_flat"]) num_patches = image_input["num_patches"] # Only one image in the current batch if len(num_patches) == 1: return (image_embeds.view(-1, self.config.text_config.hidden_size),) # NOTE: Image embeddings are split into separate tensors for each image # by the size of each embedding. feature_size = image_embeds.shape[1] image_embeds = image_embeds.view(-1, self.config.text_config.hidden_size) image_feature_sizes = [ num_patches * feature_size for num_patches in num_patches ] return image_embeds.split(image_feature_sizes) def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict: modalities = {} # Preserve the order of modalities if there are multiple of them # from the order of kwargs. for input_key in kwargs: if ( input_key in ("pixel_values_flat", "image_embeds") and "images" not in modalities ): modalities["images"] = self._parse_and_validate_image_input(**kwargs) return modalities def _set_visual_token_mask(self, input_ids: torch.Tensor) -> None: self.visual_token_mask = None def get_language_model(self) -> torch.nn.Module: return self.language_model def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings: modalities = self._parse_and_validate_multimodal_inputs(**kwargs) if not modalities: return [] # The result multimodal_embeddings is tuple of tensors, with each # tensor corresponding to a multimodal data item (image). multimodal_embeddings: tuple[torch.Tensor, ...] = () # NOTE: It is important to iterate over the keys in this dictionary # to preserve the order of the modalities. for modality in modalities: if modality == "images": image_input = modalities["images"] image_embeddings = self._process_image_input(image_input) multimodal_embeddings += tuple(image_embeddings) return multimodal_embeddings def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: MultiModalEmbeddings | None = None, *, is_multimodal: torch.Tensor | None = None, handle_oov_mm_token: bool = False, ) -> torch.Tensor: if multimodal_embeddings is not None and len(multimodal_embeddings) > 0: self._set_visual_token_mask(input_ids) # This is to satisfy the type checker for each overload if multimodal_embeddings is None or is_multimodal is None: return super().get_input_embeddings(input_ids) return super().get_input_embeddings( input_ids, multimodal_embeddings=multimodal_embeddings, is_multimodal=is_multimodal, handle_oov_mm_token=handle_oov_mm_token, ) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, **kwargs: object, ) -> IntermediateTensors: if intermediate_tensors is not None: input_ids = None inputs_embeds = None forward_kwargs = { "input_ids": input_ids, "positions": positions, "intermediate_tensors": intermediate_tensors, "inputs_embeds": inputs_embeds, } # Only required if the model is mono-architecture if self.visual_token_mask is not None: forward_kwargs.update({"visual_token_mask": self.visual_token_mask}) self.visual_token_mask = None hidden_states = self.language_model.model(**forward_kwargs) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: return self.language_model.compute_logits(hidden_states) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: ## Ignore registered_buffers ## see https://huggingface.co/nvidia/C-RADIOv2-H/blob/main/input_conditioner.py#L28 # noqa: E501 skip_substrs = ["norm_mean", "norm_std"] loader = AutoWeightsLoader(self, skip_substrs=skip_substrs) return loader.load_weights(weights) def get_mm_mapping(self) -> MultiModelKeys: """ Get the module prefix in multimodal models """ return MultiModelKeys.from_string_field( language_model="language_model", connector="mlp1", tower_model="vision_model", )