# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from abc import abstractmethod from collections.abc import Iterable, Mapping, Sequence from typing import (Final, Literal, Optional, Protocol, TypedDict, TypeVar, Union) import torch import torch.nn as nn from transformers import (BatchFeature, Mistral3Config, PixtralVisionConfig, PretrainedConfig) from transformers.models.pixtral import PixtralProcessor from vllm.config import VllmConfig from vllm.inputs import InputProcessingContext from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (ColumnParallelLinear, RowParallelLinear) from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.models.module_mapping import MultiModelKeys from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig, MultiModalKwargs) from vllm.multimodal.parse import (ImageProcessorItems, ImageSize, MultiModalDataItems) from vllm.multimodal.processing import (BaseMultiModalProcessor, BaseProcessingInfo, ProcessingCache, PromptReplacement, PromptUpdate, PromptUpdateDetails) from vllm.multimodal.profiling import BaseDummyInputsBuilder from vllm.sequence import IntermediateTensors from .interfaces import (MultiModalEmbeddings, SupportsLoRA, SupportsMultiModal, SupportsPP) from .pixtral import PixtralHFEncoderInfo, PixtralHFVisionModel from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings) from .vision import get_vision_encoder_info class Mistral3ImagePixelInputs(TypedDict): type: Literal["pixel_values_pixtral"] pixel_values: Union[torch.Tensor, list[torch.Tensor]] """ Shape: `(batch_size * num_images, num_channels, height, width)` Note that `height` or `width` may be different per batch and image, in which case the data is passed as a list instead of a batched tensor. """ class Mistral3PatchMerger(nn.Module): """ Learned merging of spatial_merge_size ** 2 patches """ def __init__(self, vision_hidden_size: int, spatial_merge_size: int, patch_size: int): super().__init__() self.vision_hidden_size = vision_hidden_size self.spatial_merge_size = spatial_merge_size self.patch_size = patch_size self.merging_layer = nn.Linear(vision_hidden_size * self.spatial_merge_size**2, vision_hidden_size, bias=False) def forward(self, image_features: torch.Tensor, image_sizes: torch.Tensor) -> torch.Tensor: image_sizes = [(image_size[0] // self.patch_size, image_size[1] // self.patch_size) for image_size in image_sizes] tokens_per_image = [h * w for h, w in image_sizes] d = image_features.shape[-1] permuted_tensor = [] for image_index, image_tokens in enumerate( image_features.split(tokens_per_image)): # Reshape image_tokens into a 2D grid h, w = image_sizes[image_index] image_grid = image_tokens.view(h, w, d).permute(2, 0, 1).unsqueeze(0) grid = torch.nn.functional.unfold( image_grid, kernel_size=self.spatial_merge_size, stride=self.spatial_merge_size) grid = grid.view(d * self.spatial_merge_size**2, -1).t() permuted_tensor.append(grid) image_features = torch.cat(permuted_tensor, dim=0) image_features = self.merging_layer(image_features) return image_features class Mistral3MultiModalProjector(nn.Module): def __init__(self, vision_hidden_size: int, text_hidden_size: int, spatial_merge_size: int, patch_size: int, projector_hidden_act: str, multimodal_projector_bias: bool, quant_config: Optional[QuantizationConfig] = None, prefix: str = ""): super().__init__() self.norm = RMSNorm(vision_hidden_size, eps=1e-5) self.patch_merger = Mistral3PatchMerger( vision_hidden_size=vision_hidden_size, spatial_merge_size=spatial_merge_size, patch_size=patch_size) self.linear_1 = ColumnParallelLinear(vision_hidden_size, text_hidden_size, bias=multimodal_projector_bias, quant_config=quant_config, prefix=f"{prefix}.linear_1") self.act = get_act_fn(projector_hidden_act) self.linear_2 = RowParallelLinear(text_hidden_size, text_hidden_size, bias=multimodal_projector_bias, quant_config=quant_config, prefix=f"{prefix}.linear_2") def forward(self, image_features: torch.Tensor, image_sizes: torch.Tensor) -> torch.Tensor: image_features = self.norm(image_features) image_features = self.patch_merger(image_features, image_sizes) hidden_states, _ = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states, _ = self.linear_2(hidden_states) return hidden_states class LlavaLikeConfig(Protocol): vision_config: Final[PretrainedConfig] image_token_index: Final[int] vision_feature_select_strategy: Final[str] vision_feature_layer: Final[Union[int, list[int]]] class LlavaLikeProcessor(Protocol): image_token: Final[str] class BaseLlavaProcessingInfo(BaseProcessingInfo): def get_hf_config(self) -> LlavaLikeConfig: return self.ctx.get_hf_config(Mistral3Config) def get_vision_encoder_info(self): return get_vision_encoder_info(self.get_hf_config()) @abstractmethod def get_hf_processor(self, **kwargs: object) -> LlavaLikeProcessor: raise NotImplementedError def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]: return {"image": None} def get_num_image_tokens( self, *, image_width: int, image_height: int, ) -> int: vision_encoder_info = self.get_vision_encoder_info() return vision_encoder_info.get_num_image_tokens( image_width=image_width, image_height=image_height, ) def get_image_size_with_most_features(self) -> ImageSize: vision_encoder_info = self.get_vision_encoder_info() width = height = vision_encoder_info.get_image_size() return ImageSize(width=width, height=height) _I = TypeVar("_I", bound=BaseLlavaProcessingInfo) class Mistral3DummyInputsBuilder(BaseDummyInputsBuilder[_I]): def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str: num_images = mm_counts.get("image", 0) processor = self.info.get_hf_processor() image_token = processor.image_token return image_token * num_images def get_dummy_mm_data( self, seq_len: int, mm_counts: Mapping[str, int], ) -> MultiModalDataDict: num_images = mm_counts.get("image", 0) target_width, target_height = \ self.info.get_image_size_with_most_features() return { "image": self._get_dummy_images(width=target_width, height=target_height, num_images=num_images) } class Mistral3ProcessingInfo(BaseLlavaProcessingInfo): def get_hf_processor(self, **kwargs: object): return self.ctx.get_hf_processor(PixtralProcessor, **kwargs) class Mistral3MultiModalProcessor( BaseMultiModalProcessor[Mistral3ProcessingInfo]): def _call_hf_processor( self, prompt: str, mm_data: Mapping[str, object], mm_kwargs: Mapping[str, object], ) -> BatchFeature: processed_outputs = super()._call_hf_processor( prompt=prompt, mm_data=mm_data, mm_kwargs=mm_kwargs, ) pixel_values = processed_outputs.get("pixel_values") if pixel_values is not None: # Avoid padding since we need the output for each image to be # independent of other images for the cache to work correctly image_sizes = processed_outputs["image_sizes"] assert len(pixel_values) == len(image_sizes) processed_outputs["pixel_values"] = [ p[:, :h, :w] for p, (h, w) in zip(pixel_values, image_sizes) ] return processed_outputs def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: return dict( pixel_values=MultiModalFieldConfig.batched("image"), image_embeds=MultiModalFieldConfig.batched("image"), ) def _get_prompt_updates( self, mm_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], out_mm_kwargs: MultiModalKwargs, ) -> Sequence[PromptUpdate]: processor = self.info.get_hf_processor(**hf_processor_mm_kwargs) hf_config = self.info.get_hf_config() tokenizer = self.info.get_tokenizer() vocab = tokenizer.get_vocab() image_break_id = vocab[processor.image_break_token] image_token_id = hf_config.image_token_index image_end_id = vocab[processor.image_end_token] assert isinstance(hf_config.vision_config, PixtralVisionConfig) encoder_info = PixtralHFEncoderInfo(hf_config) def get_replacement(item_idx: int): images = mm_items.get_items("image", ImageProcessorItems) image_size = images.get_image_size(item_idx) ncols, nrows = encoder_info.get_patch_grid_size( image_width=image_size.width, image_height=image_size.height, ) tokens = ([image_token_id] * ncols + [image_break_id]) * nrows tokens[-1] = image_end_id return PromptUpdateDetails.select_token_id(tokens, image_token_id) return [ PromptReplacement( modality="image", target=[image_token_id], replacement=get_replacement, ), ] def _build_mistral3_info( ctx: InputProcessingContext, ) -> BaseLlavaProcessingInfo: hf_config = ctx.get_hf_config(Mistral3Config) assert isinstance(hf_config.vision_config, PixtralVisionConfig) return Mistral3ProcessingInfo(ctx) def _build_mistral3_processor( info: _I, dummy_inputs: BaseDummyInputsBuilder[_I], *, cache: Optional[ProcessingCache] = None, ) -> BaseMultiModalProcessor: assert isinstance(info, Mistral3ProcessingInfo) return Mistral3MultiModalProcessor( info, dummy_inputs, # type: ignore cache=cache, ) def _get_num_hidden_layers(hf_config: LlavaLikeConfig) -> int: """Determine the number of hidden layers to initialize up to in the visual encoder. Args: hf_config: Model config with vision feature layer(s). """ feature_layers = hf_config.vision_feature_layer num_hidden_layers = hf_config.vision_config.num_hidden_layers # If we have one feature layer, initialize up to that layer if isinstance(feature_layers, int): return _get_layer_index(feature_layers, num_hidden_layers) # If we have multiple feature layers, initialize up to the deepest one elif isinstance(feature_layers, (list, tuple)): return max( _get_layer_index(idx, num_hidden_layers) for idx in feature_layers) raise TypeError(f"vision_layer_feature type: {type(feature_layers)}" " is not supported") def _get_layer_index(feature_layer_index: int, num_hidden_layers: int) -> int: """Given a signed vision feature layer, get the number of hidden layers needed to leverage it. Args: feature_layer_index: Index of a required layer in the visual encoder. num_hidden_layers: The total number of hidden layers in the visual encoder. """ if feature_layer_index < 0: return num_hidden_layers + feature_layer_index + 1 return feature_layer_index def init_vision_tower_for_llava( hf_config: LlavaLikeConfig, quant_config: Optional[QuantizationConfig], *, require_post_norm: Optional[bool] = None, prefix: str = "", ) -> PixtralHFVisionModel: vision_config = hf_config.vision_config # Initialize the vision tower only up to the deepest required feature layer num_hidden_layers = _get_num_hidden_layers(hf_config) assert isinstance(vision_config, PixtralVisionConfig) return PixtralHFVisionModel( vision_config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers, require_post_norm=require_post_norm, prefix=prefix, ) @MULTIMODAL_REGISTRY.register_processor( _build_mistral3_processor, info=_build_mistral3_info, dummy_inputs=Mistral3DummyInputsBuilder) class Mistral3ForConditionalGeneration(nn.Module, SupportsLoRA, SupportsMultiModal, SupportsPP): packed_modules_mapping = { "qkv_proj": ["q_proj", "k_proj", "v_proj"], "gate_up_proj": ["gate_proj", "up_proj"] } hf_to_vllm_mapper = WeightsMapper( orig_to_new_prefix={ # mapping for new names in checkpoint saved after transformers v4.52 "model.language_model.": "language_model.model.", "model.vision_tower.": "vision_tower.", "model.multi_modal_projector.": "multi_modal_projector.", "lm_head.": "language_model.lm_head.", }) def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config # NOTE: These are special cases for Pixtral-12B in the HF-format # https://huggingface.co/mistral-community/pixtral-12b/blob/main/config.json # noqa if (config.text_config.architectures is None and config.text_config.model_type == "mistral"): config.text_config.architectures = ["MistralForCausalLM"] if (config.projector_hidden_act is None and config.vision_config.hidden_act == "gelu"): config.projector_hidden_act = "gelu" # TODO: Optionally initializes this for supporting embeddings. self.vision_tower = init_vision_tower_for_llava( config, quant_config, require_post_norm=False, prefix=maybe_prefix(prefix, "vision_tower")) self.multi_modal_projector = Mistral3MultiModalProjector( vision_hidden_size=config.vision_config.hidden_size, text_hidden_size=config.text_config.hidden_size, projector_hidden_act=config.projector_hidden_act, spatial_merge_size=config.spatial_merge_size, patch_size=config.vision_config.patch_size, multimodal_projector_bias=config.multimodal_projector_bias, quant_config=quant_config, prefix=maybe_prefix(prefix, "multi_modal_projector")) self.language_model = init_vllm_registered_model( vllm_config=vllm_config, hf_config=config.text_config, prefix=maybe_prefix(prefix, "language_model"), ) self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor: h = w = self.config.vision_config.image_size expected_dims = (3, h, w) actual_dims = tuple(data.shape[1:]) if actual_dims != expected_dims: expected_expr = ("batch_size", *map(str, expected_dims)) raise ValueError( f"The expected shape of pixel values is {expected_expr}. " f"You supplied {tuple(data.shape)}.") return data def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[Mistral3ImagePixelInputs]: pixel_values = kwargs.pop("pixel_values", None) image_embeds = kwargs.pop("image_embeds", None) if pixel_values is None and image_embeds is None: return None assert pixel_values is not None if not isinstance(pixel_values, (torch.Tensor, list)): raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") return Mistral3ImagePixelInputs( type="pixel_values_pixtral", pixel_values=flatten_bn(pixel_values), ) def _process_image_input( self, image_input: Mistral3ImagePixelInputs, ) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]: if image_input["type"] == "image_embeds": return image_input["data"] image_sizes = [(img.shape[-2], img.shape[-1]) for img in image_input["pixel_values"]] image_features = self.vision_tower(image_input["pixel_values"]) if isinstance(image_features, torch.Tensor): return self.multi_modal_projector(image_features, image_sizes) feature_sizes = [ image_feature.shape[0] // self.config.spatial_merge_size**2 for image_feature in image_features ] image_embeds = self.multi_modal_projector(torch.cat(image_features), image_sizes) if len(feature_sizes) > 1: image_embeds = torch.split(image_embeds, feature_sizes) else: image_embeds = (image_embeds, ) return image_embeds def get_language_model(self) -> torch.nn.Module: return self.language_model def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings: image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return [] vision_embeddings = self._process_image_input(image_input) return vision_embeddings def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: Optional[MultiModalEmbeddings] = None, ) -> torch.Tensor: inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: inputs_embeds = merge_multimodal_embeddings( input_ids, inputs_embeds, multimodal_embeddings, self.config.image_token_index, ) return inputs_embeds def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs: object, ) -> Union[torch.Tensor, IntermediateTensors]: """Run forward pass for Mistral3. One key thing to understand is the `input_ids` already accounts for the positions of the to-be-inserted image embeddings. Concretely, consider a text prompt: `"USER: \\nWhat's the content of the image?\\nASSISTANT:"`. Tokenizer outputs: `[1, 3148, 1001, 29901, 29871, 32000, 29871, 13, 5618, 29915, 29879, 278, 2793, 310, 278, 1967, 29973, 13, 22933, 9047, 13566, 29901]`. To reserve space in KV cache, we have to insert placeholder tokens before they are inputted to the model, so the input processor prepends additional image tokens (denoted as `32000`), resulting in: `[1, 3148, 1001, 29901, 29871, 32000, ..., 32000, 29871, 13, 5618, 29915, 29879, 278, 2793, 310, 278, 1967, 29973, 13, 22933, 9047, 13566, 29901]`. We insert 575 tokens so that including the original image token in the input, there are a total of 576 (24 * 24) image tokens, which corresponds to the number of image tokens inputted to the language model, i.e. the number of image tokens outputted by the visual encoder. This way, the `positions` and `attn_metadata` are consistent with the `input_ids`. Args: input_ids: Flattened (concatenated) input_ids corresponding to a batch. pixel_values: The pixels in each input image. Info: [Mistral3ImagePixelInputs][] """ if intermediate_tensors is not None: inputs_embeds = None # NOTE: In v1, inputs_embeds is always generated at model runner, this # condition is for v0 compatibility. elif inputs_embeds is None: vision_embeddings = self.get_multimodal_embeddings(**kwargs) inputs_embeds = self.get_input_embeddings(input_ids, vision_embeddings) input_ids = None hidden_states = self.language_model.model(input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: return self.language_model.compute_logits(hidden_states, sampling_metadata) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper) def get_mm_mapping(self) -> MultiModelKeys: """ Get the module prefix in multimodal models """ return MultiModelKeys.from_string_field( language_model="language_model", connector="multi_modal_projector", tower_model="vision_tower")