# SPDX-License-Identifier: Apache-2.0 import pytest import torch from vllm.v1.sample.metadata import SamplingMetadata from vllm.v1.sample.rejection_sampler import INVALID_TOKEN_ID, RejectionSampler @pytest.fixture def sampler(): return RejectionSampler() def create_logits_tensor(token_ids: list[int], vocab_size: int = 100) -> torch.Tensor: """Helper function to create logits tensor that will produce desired token ids on argmax""" logits = torch.full((len(token_ids), vocab_size), -100.0).cuda() for i, token_id in enumerate(token_ids): logits[i, token_id] = 100.0 return logits def create_sampling_metadata(spec_tokens: list[list[int]]) -> SamplingMetadata: batch_size = len(spec_tokens) return SamplingMetadata( temperature=torch.tensor([]), all_greedy=True, all_random=False, top_p=None, top_k=None, min_p=torch.empty(batch_size, ), generators={}, max_num_logprobs=0, no_penalties=False, prompt_token_ids=None, frequency_penalties=torch.tensor([]), presence_penalties=torch.tensor([]), repetition_penalties=torch.tensor([]), output_token_ids=[], min_tokens={}, logit_bias=[None] * batch_size, allowed_token_ids_mask=None, ) def test_perfect_match(sampler): """Test when output tokens perfectly match speculated tokens""" spec_tokens = [[1, 2, 3]] output_tokens = [1, 2, 3, 4] # 4 is the bonus token metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens) output = sampler(spec_tokens, logits, metadata) expected = torch.tensor([[1, 2, 3, 4]], dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected) def test_early_mismatch(sampler): """Test when there's an early mismatch in tokens""" spec_tokens = [[1, 2, 3]] output_tokens = [1, 5, 3, 4] # Mismatch at position 1 metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens) output = sampler(spec_tokens, logits, metadata) expected = torch.tensor([[1, 5, INVALID_TOKEN_ID, INVALID_TOKEN_ID]], dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected) def test_multiple_sequences(sampler): """Test handling multiple sequences of speculated tokens""" spec_tokens = [[1, 2], [3]] output_tokens = [1, 2, 5, 3, 4] # Two sequences with bonus tokens 5 and 4 metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens) output = sampler(spec_tokens, logits, metadata) expected = torch.tensor([[1, 2, 5], [3, 4, INVALID_TOKEN_ID]], dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected) def test_single_token_sequence(sampler): """Test handling sequences with single token""" spec_tokens = [[1]] output_tokens = [1, 2] # Single token with bonus token 2 metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens) output = sampler(spec_tokens, logits, metadata) expected = torch.tensor([[1, 2]], dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected) def test_empty_sequence(sampler): """Test handling empty sequence of speculated tokens""" spec_tokens: list[list[int]] = [[]] output_tokens = [5] # Just the bonus token metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens) output = sampler(spec_tokens, logits, metadata) expected = torch.tensor([[5]], dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected) def test_multiple_mismatches(sampler): """Test handling multiple sequences with mismatches""" spec_tokens = [[1, 2, 3], [4, 5, 6]] output_tokens = [1, 2, 7, 6, 4, 8, 6, 9] # Mismatches in both sequences metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens) output = sampler(spec_tokens, logits, metadata) expected = torch.tensor([[1, 2, 7, INVALID_TOKEN_ID], [4, 8, INVALID_TOKEN_ID, INVALID_TOKEN_ID]], dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected) @pytest.mark.parametrize( "spec_tokens,output_tokens,expected", [ ([[1, 2]], [1, 2, 3], [[1, 2, 3]]), # Perfect match with bonus ([[1]], [2, 3], [[2, INVALID_TOKEN_ID]]), # First mismatch ([[1, 2], [3, 4]], [1, 5, 6, 3, 4, 7], [[1, 5, INVALID_TOKEN_ID], [3, 4, 7]]), # Mixed matches ]) def test_parametrized_cases(sampler, spec_tokens, output_tokens, expected): """Parametrized test for various matching scenarios""" metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens) output = sampler(spec_tokens, logits, metadata) expected_tensor = torch.tensor(expected, dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected_tensor) def test_logits_shape_handling(sampler): """Test handling of different logits tensor shapes""" spec_tokens = [[1, 2]] output_tokens = [1, 2, 3] vocab_size = 1000 metadata = create_sampling_metadata(spec_tokens) logits = create_logits_tensor(output_tokens, vocab_size) output = sampler(spec_tokens, logits, metadata) expected = torch.tensor([[1, 2, 3]], dtype=torch.int, device=logits.device) assert torch.equal(output.sampled_token_ids, expected) assert logits.shape[-1] == vocab_size