"""Compare the outputs of HF and distributed vLLM when using greedy sampling. vLLM will allocate all the available memory, so we need to run the tests one by one. The solution is to pass arguments (model name) by environment variables. Run: ```sh TEST_DIST_MODEL=facebook/opt-125m pytest \ test_chunked_prefill_distributed.py TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf \ test_chunked_prefill_distributed.py ``` """ import os import pytest import torch from ..models.utils import check_outputs_equal MODELS = [ os.environ["TEST_DIST_MODEL"], ] DISTRIBUTED_EXECUTOR_BACKEND = "DISTRIBUTED_EXECUTOR_BACKEND" @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Need at least 2 GPUs to run the test.") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [5]) @pytest.mark.parametrize("chunked_prefill_token_size", [16]) def test_models( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, chunked_prefill_token_size: int, ) -> None: distributed_executor_backend = os.getenv(DISTRIBUTED_EXECUTOR_BACKEND) # Add a chunked prefill config. max_num_seqs = min(chunked_prefill_token_size, 256) assert chunked_prefill_token_size != -1 enable_chunked_prefill = True max_num_batched_tokens = chunked_prefill_token_size with hf_runner(model, dtype=dtype) as hf_model: hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) with vllm_runner( model, dtype=dtype, tensor_parallel_size=2, max_num_seqs=max_num_seqs, enable_chunked_prefill=enable_chunked_prefill, max_num_batched_tokens=max_num_batched_tokens, distributed_executor_backend=distributed_executor_backend, ) as vllm_model: vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) check_outputs_equal( outputs_0_lst=hf_outputs, outputs_1_lst=vllm_outputs, name_0="hf", name_1="vllm", )