# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import json from collections.abc import Sequence import partial_json_parser import regex as re from partial_json_parser.core.options import Allow from vllm.entrypoints.chat_utils import make_tool_call_id from vllm.entrypoints.openai.protocol import ( ChatCompletionRequest, DeltaFunctionCall, DeltaMessage, DeltaToolCall, ExtractedToolCallInformation, FunctionCall, ToolCall, ) from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import ( ToolParser, ) from vllm.logger import init_logger from vllm.tokenizers import MistralTokenizer, TokenizerLike logger = init_logger(__name__) class Hermes2ProToolParser(ToolParser): def __init__(self, tokenizer: TokenizerLike): super().__init__(tokenizer) if isinstance(tokenizer, MistralTokenizer): logger.error("Detected Mistral tokenizer when using a Hermes model") self.model_tokenizer = tokenizer.tokenizer self.current_tool_name_sent: bool = False self.prev_tool_call_arr: list[dict] = [] self.current_tool_id: int = -1 self.streamed_args_for_tool: list[ str ] = [] # map what has been streamed for each tool so far to a list self.tool_call_start_token: str = "" self.tool_call_end_token: str = "" self.tool_call_regex = re.compile( r"(.*?)|(.*)", re.DOTALL ) self.scratch_pad_regex = re.compile( r"(.*?)", re.DOTALL ) if not self.model_tokenizer: raise ValueError( "The model tokenizer must be passed to the ToolParser " "constructor during construction." ) self.tool_call_start_token_ids = self.model_tokenizer.encode( self.tool_call_start_token, add_special_tokens=False ) self.tool_call_end_token_ids = self.model_tokenizer.encode( self.tool_call_end_token, add_special_tokens=False ) self.tool_call_start_token_array = [ self.model_tokenizer.decode([token_id]) for token_id in self.tool_call_start_token_ids ] self.tool_call_end_token_array = [ self.model_tokenizer.decode([token_id]) for token_id in self.tool_call_end_token_ids ] self.buffered_delta_text = "" # Very simple idea: when encountering tokens like <, tool, _call, >, # <, /, tool, _call, >, store them in a buffer. # When the last token is encountered, empty the buffer and return it. # If a token appears in an incorrect sequence while storing in the buffer, # return the preceding buffer along with the token. def tool_call_delta_buffer(self, delta_text: str): # If the sequence of tool_call_start or tool_call_end tokens is not yet # complete, fill the buffer with the token and return "". if ( delta_text in self.tool_call_start_token_array or delta_text in self.tool_call_end_token_array ): # If delta_text is the last token of tool_call_start_token or # tool_call_end_token, empty the buffer and return # the buffered text + delta_text. if ( delta_text == self.tool_call_start_token_array[-1] or delta_text == self.tool_call_end_token_array[-1] ): buffered_text = self.buffered_delta_text self.buffered_delta_text = "" return buffered_text + delta_text else: self.buffered_delta_text = self.buffered_delta_text + delta_text return "" else: if self.buffered_delta_text: buffered_text = self.buffered_delta_text self.buffered_delta_text = "" return buffered_text + delta_text else: return delta_text def adjust_request(self, request: ChatCompletionRequest) -> ChatCompletionRequest: request = super().adjust_request(request) if request.tools and request.tool_choice != "none": # do not skip special tokens because the tool_call tokens are # marked "special" in some models. Since they are skipped # prior to the call to the tool parser, it breaks tool calling. request.skip_special_tokens = False return request def extract_tool_calls( self, model_output: str, request: ChatCompletionRequest, ) -> ExtractedToolCallInformation: # sanity check; avoid unnecessary processing if self.tool_call_start_token not in model_output: return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) else: try: # there are two possible captures - between tags, or between a # tag and end-of-string so the result of # findall is an array of tuples where one is a function call and # the other is None function_call_tuples = self.tool_call_regex.findall(model_output) # load the JSON, and then use it to build the Function and # Tool Call raw_function_calls = [ json.loads(match[0] if match[0] else match[1]) for match in function_call_tuples ] tool_calls = [ ToolCall( type="function", function=FunctionCall( name=function_call["name"], # function call args are JSON but as a string arguments=json.dumps( function_call["arguments"], ensure_ascii=False ), ), ) for function_call in raw_function_calls ] content = model_output[: model_output.find(self.tool_call_start_token)] return ExtractedToolCallInformation( tools_called=True, tool_calls=tool_calls, content=content if content else None, ) except Exception: logger.exception("Error in extracting tool call from response.") return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) def extract_tool_calls_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], request: ChatCompletionRequest, ) -> DeltaMessage | None: # 1. All tokens are parsed based on _text, not token_ids. # 2. All incoming text data is processed by the tool_call_delta_buffer # function for buffering before being used for parsing. delta_text = self.tool_call_delta_buffer(delta_text) # If the last characters of previous_text # match self.buffered_delta_text, remove only the matching part. if ( len(previous_text) >= len(self.buffered_delta_text) and previous_text[-len(self.buffered_delta_text) :] == self.buffered_delta_text ): previous_text = previous_text[: -len(self.buffered_delta_text)] current_text = previous_text + delta_text logger.debug("delta_text: %s", delta_text) logger.debug("delta_token_ids: %s", delta_token_ids) # check to see if we should be streaming a tool call - is there a if self.tool_call_start_token not in current_text: logger.debug("No tool call tokens found!") return DeltaMessage(content=delta_text) try: # figure out where we are in the parsing by counting tool call # start & end tags prev_tool_start_count = previous_text.count(self.tool_call_start_token) prev_tool_end_count = previous_text.count(self.tool_call_end_token) cur_tool_start_count = current_text.count(self.tool_call_start_token) cur_tool_end_count = current_text.count(self.tool_call_end_token) tool_call_portion = None text_portion = None # case: if we're generating text, OR rounding out a tool call if ( cur_tool_start_count == cur_tool_end_count and prev_tool_end_count == cur_tool_end_count and self.tool_call_end_token not in delta_text ): logger.debug("Generating text content! skipping tool parsing.") return DeltaMessage(content=delta_text) if self.tool_call_end_token in delta_text: logger.debug("tool_call_end_token in delta_text") full_text = current_text + delta_text tool_call_portion = ( full_text.split(self.tool_call_start_token)[-1] .split(self.tool_call_end_token)[0] .rstrip() ) delta_text = delta_text.split(self.tool_call_end_token)[0].rstrip() text_portion = delta_text.split(self.tool_call_end_token)[-1].lstrip() # case: if tool open & close tag counts don't match, we're doing # imaginary "else" block here # something with tools with this diff. # flags for partial JSON parting. exported constants from # "Allow" are handled via BIT MASK flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR # case -- we're starting a new tool call if ( cur_tool_start_count > cur_tool_end_count and cur_tool_start_count > prev_tool_start_count ): if len(delta_token_ids) > 1: tool_call_portion = current_text.split(self.tool_call_start_token)[ -1 ] else: tool_call_portion = None delta = None text_portion = None # set cursors and state appropriately self.current_tool_id += 1 self.current_tool_name_sent = False self.streamed_args_for_tool.append("") logger.debug("Starting on a new tool %s", self.current_tool_id) # case -- we're updating an existing tool call elif ( cur_tool_start_count > cur_tool_end_count and cur_tool_start_count == prev_tool_start_count ): # get the portion of the text that's the tool call tool_call_portion = current_text.split(self.tool_call_start_token)[-1] text_portion = None # case -- the current tool call is being closed. elif ( cur_tool_start_count == cur_tool_end_count and cur_tool_end_count >= prev_tool_end_count ): if self.prev_tool_call_arr is None or len(self.prev_tool_call_arr) == 0: logger.debug("attempting to close tool call, but no tool call") return None diff = self.prev_tool_call_arr[self.current_tool_id].get("arguments") if diff: diff = ( diff.encode("utf-8").decode("unicode_escape") if diff is str else diff ) if '"}' not in delta_text: return None end_loc = delta_text.rindex('"}') diff = delta_text[:end_loc] + '"}' logger.debug( "Finishing tool and found diff that had not " "been streamed yet: %s", diff, ) self.streamed_args_for_tool[self.current_tool_id] += diff return DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall(arguments=diff).model_dump( exclude_none=True ), ) ] ) # case -- otherwise we're just generating text else: text = delta_text.replace(self.tool_call_start_token, "") text = text.replace(self.tool_call_end_token, "") delta = DeltaMessage(tool_calls=[], content=text) return delta try: current_tool_call = ( partial_json_parser.loads(tool_call_portion or "{}", flags) if tool_call_portion else None ) logger.debug("Parsed tool call %s", current_tool_call) except partial_json_parser.core.exceptions.MalformedJSON: logger.debug("not enough tokens to parse into JSON yet") return None except json.decoder.JSONDecodeError: logger.debug("unable to parse JSON") return None # case - we haven't sent the tool name yet. If it's available, send # it. otherwise, wait until it's available. if not self.current_tool_name_sent: if current_tool_call is None: return None function_name: str | None = current_tool_call.get("name") if function_name: self.current_tool_name_sent = True return DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, type="function", id=make_tool_call_id(), function=DeltaFunctionCall( name=function_name ).model_dump(exclude_none=True), ) ] ) else: return None # case -- otherwise, send the tool call delta # if the tool call portion is None, send the delta as text if tool_call_portion is None: # if there's text but not tool calls, send that - # otherwise None to skip chunk delta = ( DeltaMessage(content=delta_text) if text_portion is not None else None ) return delta # now, the nitty-gritty of tool calls # now we have the portion to parse as tool call. logger.debug( "Trying to parse current tool call with ID %s", self.current_tool_id ) # if we're starting a new tool call, push an empty object in as # a placeholder for the arguments if len(self.prev_tool_call_arr) <= self.current_tool_id: self.prev_tool_call_arr.append({}) # main logic for tool parsing here - compare prev. partially-parsed # JSON to the current partially-parsed JSON prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get( "arguments" ) cur_arguments = current_tool_call.get("arguments") logger.debug("diffing old arguments: %s", prev_arguments) logger.debug("against new ones: %s", cur_arguments) # case -- no arguments have been created yet. skip sending a delta. if not cur_arguments and not prev_arguments: logger.debug("Skipping text %s - no arguments", delta_text) delta = None # case -- prev arguments are defined, but non are now. # probably impossible, but not a fatal error - just keep going elif not cur_arguments and prev_arguments: logger.error( "should be impossible to have arguments reset " "mid-call. skipping streaming anything." ) delta = None # case -- we now have the first info about arguments available from # autocompleting the JSON elif cur_arguments and not prev_arguments: # extract the content after {"name": ..., "arguments": # directly from tool_call_portion as cur_arguments_json, # since cur_arguments may differ from the original text # due to partial JSON parsing # for example, tool_call_portion = # {"name": "search", "arguments": {"search_request": {" # but cur_arguments = # {"search_request": {}} function_name = current_tool_call.get("name") match = re.search( r'\{"name":\s*"' + re.escape(function_name) + r'"\s*,\s*"arguments":\s*(.*)', tool_call_portion.strip(), re.DOTALL, ) if match: cur_arguments_json = match.group(1) else: cur_arguments_json = json.dumps(cur_arguments, ensure_ascii=False) logger.debug("finding %s in %s", delta_text, cur_arguments_json) # get the location where previous args differ from current. if delta_text not in cur_arguments_json: return None args_delta_start_loc = cur_arguments_json.rindex(delta_text) + len( delta_text ) # use that to find the actual delta arguments_delta = cur_arguments_json[:args_delta_start_loc] logger.debug("First tokens in arguments received: %s", arguments_delta) delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=arguments_delta ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[self.current_tool_id] += arguments_delta # last case -- we have an update to existing arguments. elif cur_arguments and prev_arguments: # judge whether the tool_call_portion is a complete JSON try: json.loads(tool_call_portion) is_complete_json = True except Exception: is_complete_json = False # if the delta_text ends with a '}' and tool_call_portion is a # complete JSON, then the last '}' does not belong to the # arguments, so we should trim it off if ( isinstance(delta_text, str) and len(delta_text.rstrip()) >= 1 and delta_text.rstrip()[-1] == "}" and is_complete_json ): delta_text = delta_text.rstrip()[:-1] logger.debug("got diff %s", delta_text) delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall(arguments=delta_text).model_dump( exclude_none=True ), ) ] ) self.streamed_args_for_tool[self.current_tool_id] += delta_text # handle saving the state for the current tool into # the "prev" list for use in diffing for the next iteration if self.current_tool_id == len(self.prev_tool_call_arr) - 1: self.prev_tool_call_arr[self.current_tool_id] = current_tool_call else: self.prev_tool_call_arr.append(current_tool_call) return delta except Exception: logger.exception("Error trying to handle streaming tool call.") return None # do not stream a delta. skip this token ID.