# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from typing import Any, Optional import torch from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE from vllm._custom_ops import ( cpu_gemm_wna16, ) from vllm.logger import init_logger from vllm.model_executor.layers.linear import ( LinearBase, LinearMethodBase, UnquantizedLinearMethod, ) from vllm.model_executor.layers.quantization import QuantizationMethods from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig, QuantizeMethodBase, ) from vllm.model_executor.layers.quantization.utils.gptq_utils import ( get_linear_quant_method, ) from vllm.model_executor.layers.quantization.utils.marlin_utils import ( marlin_repeat_scales_on_all_ranks, ) from vllm.model_executor.layers.quantization.utils.quant_utils import ( is_layer_skipped, pack_cols, unpack_cols, ) from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead from vllm.model_executor.models.utils import WeightsMapper from vllm.model_executor.parameter import ( ChannelQuantScaleParameter, GroupQuantScaleParameter, PackedColumnParameter, PackedvLLMParameter, RowvLLMParameter, ) from vllm.model_executor.utils import set_weight_attrs from vllm.platforms import current_platform from vllm.transformers_utils.config import get_safetensors_params_metadata from vllm.utils.collection_utils import is_list_of logger = init_logger(__name__) class CPUGPTQConfig(QuantizationConfig): """Config class for CPU GPTQ quant""" def __init__( self, weight_bits: int, group_size: int, desc_act: bool, is_sym: bool, lm_head_quantized: bool, dynamic: dict[str, dict[str, int | bool]], full_config: dict[str, Any], modules_in_block_to_quantize: list[str] | None = None, ) -> None: super().__init__() if desc_act and group_size == -1: # In this case, act_order == True is the same as act_order == False # (since we have only one group per output channel) desc_act = False # GPTQModel use `dynamic` config property to allow per module # quantization config so each module can be individually optimized. # Format is dict[str, dict] where key is a regex string that can # perform both positive ("+:" prefixed) or negative ("-:" prefixed) # matching of a module. # Default to positive match, override base quant config mode, if no # prefix is used. Value is in dict format of field key and override # value. # Negative matching will skip quantization init for this module # entirely: # non-quantized inference. More details and quantization examples can be # found at: https://github.com/ModelCloud/GPTQModel # Example: # # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9 # # last 1/4 of the layers 16-21 has 8bit and group_size 64 # dynamic = { # #`.*\.` matches the layers_node prefix # # positive match layer 10-15 # r"+:.*\.(?:1[0-5])\..*": {"bits": 8,}, # # positive match layer 16-21 # r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,}, # r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers # } assert weight_bits == 4 self.dynamic = dynamic self.weight_bits = weight_bits self.is_sym = is_sym self.pack_factor = 32 // weight_bits # packed into int32 self.group_size = group_size self.desc_act = desc_act self.lm_head_quantized = lm_head_quantized self.full_config = full_config self.modules_in_block_to_quantize = modules_in_block_to_quantize or [] def __repr__(self) -> str: return ( f"CPUWNA16Config(" f"group_size={self.group_size}, " f"desc_act={self.desc_act}, " f"lm_head_quantized={self.lm_head_quantized}, " f"dynamic={self.dynamic}, " f"modules_in_block_to_quantize={self.modules_in_block_to_quantize})" ) @classmethod def get_name(cls) -> QuantizationMethods: return "cpu_gptq" @classmethod def get_supported_act_dtypes(cls) -> list[torch.dtype]: return [torch.half, torch.bfloat16] @classmethod def get_min_capability(cls) -> int: return -1 @classmethod def get_config_filenames(cls) -> list[str]: return ["quantize_config.json"] @classmethod def from_config(cls, config: dict[str, Any]) -> "CPUGPTQConfig": weight_bits = cls.get_from_keys(config, ["bits"]) desc_act = cls.get_from_keys_or(config, ["desc_act"], default=False) dynamic = cls.get_from_keys_or(config, ["dynamic"], default={}) group_size = cls.get_from_keys(config, ["group_size"]) is_sym = cls.get_from_keys(config, ["sym"]) lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False) modules_in_block_to_quantize = cls.get_from_keys_or( config, ["modules_in_block_to_quantize"], default=None ) return cls( weight_bits, group_size, desc_act, is_sym, lm_head_quantized, dynamic, config, modules_in_block_to_quantize, ) @classmethod def override_quantization_method( cls, hf_quant_cfg, user_quant ) -> QuantizationMethods | None: quant_method = hf_quant_cfg.get("quant_method", "").lower() if current_platform.is_cpu() and (quant_method == "gptq"): return cls.get_name() return None def get_quant_method( self, layer: torch.nn.Module, prefix: str ) -> Optional["QuantizeMethodBase"]: return get_linear_quant_method(self, layer, prefix, CPUGPTQLinearMethod) # type: ignore def apply_vllm_mapper(self, hf_to_vllm_mapper): if self.modules_in_block_to_quantize is not None: self.modules_in_block_to_quantize = hf_to_vllm_mapper.apply_list( self.modules_in_block_to_quantize ) def maybe_update_config(self, model_name: str, revision: str | None = None): if self.modules_in_block_to_quantize: if is_list_of(self.modules_in_block_to_quantize, list): # original modules_in_block_to_quantize: list[list[str]] # flatten original modules_in_block_to_quantize self.modules_in_block_to_quantize = [ item for sublist in self.modules_in_block_to_quantize for item in sublist ] return unquant_dtypes = [torch.float16, torch.bfloat16, torch.float32] metadata = get_safetensors_params_metadata(model_name, revision=revision) quant_layers: set[str] = { param_name.rsplit(".", 1)[0] for param_name, info in metadata.items() if (dtype := info.get("dtype", None)) and _SAFETENSORS_TO_TORCH_DTYPE[dtype] not in unquant_dtypes } self.modules_in_block_to_quantize = list(quant_layers) class CPUGPTQLinearMethod(LinearMethodBase): """Linear method for GPTQ on CPU. Args: quant_config: The CPUWNA16 quantization config. """ def __init__(self, quant_config: CPUGPTQConfig) -> None: self.quant_config = quant_config assert self.quant_config.is_sym, "GPTQ asym quant is not supported on CPU" def create_weights( self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: list[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs, ) -> None: output_size_per_partition = sum(output_partition_sizes) assert output_size_per_partition * self.quant_config.weight_bits % 32 == 0 assert output_size_per_partition % 32 == 0 assert input_size_per_partition % 32 == 0 is_row_parallel = input_size != input_size_per_partition weight_loader = extra_weight_attrs.get("weight_loader") # Normalize group_size if self.quant_config.group_size != -1: group_size = self.quant_config.group_size else: group_size = input_size # Determine sharding if marlin_repeat_scales_on_all_ranks( self.quant_config.desc_act, self.quant_config.group_size, is_row_parallel ): # By setting scale_dim == None, weight_loader will # repeat the scales on each rank in TP>1 case. scales_and_zp_input_dim = None scales_and_zp_size = input_size // group_size else: # By setting scale_dim == 0, weight_loader will # shard the scales in TP>1 case. scales_and_zp_input_dim = 0 scales_and_zp_size = input_size_per_partition // group_size # Quantized weights qweight = PackedvLLMParameter( data=torch.empty( input_size_per_partition // self.quant_config.pack_factor, output_size_per_partition, dtype=torch.int32, ), input_dim=0, output_dim=1, packed_dim=0, packed_factor=self.quant_config.pack_factor, weight_loader=weight_loader, ) # Activation order g_idx = RowvLLMParameter( data=torch.empty( input_size_per_partition, dtype=torch.int32, ), input_dim=0, weight_loader=weight_loader, ) set_weight_attrs( g_idx, {"ignore_warning": True}, ) qzeros_args = { "data": torch.empty( scales_and_zp_size, output_size_per_partition // self.quant_config.pack_factor, dtype=torch.int32, ), "weight_loader": weight_loader, } weight_scale_args = { "data": torch.empty( scales_and_zp_size, output_size_per_partition, dtype=params_dtype, ), "weight_loader": weight_loader, } if scales_and_zp_input_dim is None: scales = ChannelQuantScaleParameter(output_dim=1, **weight_scale_args) qzeros = PackedColumnParameter( output_dim=1, packed_dim=1, packed_factor=self.quant_config.pack_factor, **qzeros_args, ) else: scales = GroupQuantScaleParameter( output_dim=1, input_dim=0, **weight_scale_args ) qzeros = PackedvLLMParameter( input_dim=0, output_dim=1, packed_dim=1, packed_factor=self.quant_config.pack_factor, **qzeros_args, ) layer.register_parameter("qweight", qweight) layer.register_parameter("g_idx", g_idx) layer.register_parameter("scales", scales) layer.register_parameter("qzeros", qzeros) def process_weights_after_loading(self, layer: torch.nn.Module) -> None: torch.set_printoptions(profile="full", linewidth=5000, sci_mode=False) packed_weight = layer.qweight.data bits = self.quant_config.weight_bits pack_factor = int(self.quant_config.pack_factor) p_w_k, p_w_n = packed_weight.size() input_size = p_w_k * pack_factor output_size = p_w_n isa_hint = _get_isa_hint(layer.scales.dtype) layer.isa_hint = isa_hint layer.qzeros = None if not self.quant_config.desc_act: layer.g_idx = None # convert input dim packed to output dim packed weight = unpack_cols(packed_weight, bits, p_w_k, p_w_n * pack_factor).view( p_w_k, p_w_n, pack_factor ) weight = weight.permute(0, 2, 1).reshape(input_size, output_size).contiguous() weight = pack_cols(weight, bits, input_size, output_size) # make 16 output channel as a block and transpose to the make # the block contigous weight = ( weight.view(input_size, -1, 16 // pack_factor) .permute(1, 0, 2) .reshape(-1, input_size * 16 // pack_factor) .contiguous() ) layer.qweight.data = weight def apply( self, layer: torch.nn.Module, x: torch.Tensor, bias: torch.Tensor | None = None, ) -> torch.Tensor: x = cpu_gemm_wna16( input=x, q_weight=layer.qweight, scales=layer.scales, zeros=layer.qzeros, g_idx=layer.g_idx, bias=bias, pack_factor=8, isa_hint=layer.isa_hint, ) return x class CPUAWQConfig(QuantizationConfig): """Config class for CPU AWQ""" def __init__( self, weight_bits: int, group_size: int, zero_point: bool, lm_head_quantized: bool, modules_to_not_convert: list[str] | None, full_config: dict[str, Any], ) -> None: super().__init__() assert weight_bits == 4 self.pack_factor = 32 // weight_bits # packed into int32 self.group_size = group_size self.zero_point = zero_point self.lm_head_quantized = lm_head_quantized self.weight_bits = weight_bits self.modules_to_not_convert = modules_to_not_convert or [] self.full_config = full_config def __repr__(self) -> str: return ( f"AWQMarlinConfig(" f"group_size={self.group_size}, " f"zero_point={self.zero_point}, " f"lm_head_quantized={self.lm_head_quantized}, " f"modules_to_not_convert={self.modules_to_not_convert})" ) @classmethod def get_name(cls) -> "QuantizationMethods": return "cpu_awq" @classmethod def get_supported_act_dtypes(cls) -> list[torch.dtype]: return [torch.half, torch.bfloat16] @classmethod def get_min_capability(cls) -> int: return -1 @classmethod def get_config_filenames(cls) -> list[str]: return ["quantize_config.json"] @classmethod def from_config(cls, config: dict[str, Any]) -> "CPUAWQConfig": weight_bits = cls.get_from_keys(config, ["bits"]) group_size = cls.get_from_keys(config, ["group_size"]) zero_point = cls.get_from_keys(config, ["zero_point"]) lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False) modules_to_not_convert = cls.get_from_keys_or( config, ["modules_to_not_convert"], None ) return cls( weight_bits, group_size, zero_point, lm_head_quantized, modules_to_not_convert, config, ) @classmethod def override_quantization_method( cls, hf_quant_cfg, user_quant ) -> Optional["QuantizationMethods"]: quant_method = hf_quant_cfg.get("quant_method", "").lower() if current_platform.is_cpu() and (quant_method == "awq"): return cls.get_name() return None def get_quant_method( self, layer: torch.nn.Module, prefix: str ) -> Optional["QuantizeMethodBase"]: if isinstance(layer, LinearBase) or ( isinstance(layer, ParallelLMHead) and self.lm_head_quantized ): if is_layer_skipped( prefix, self.modules_to_not_convert, self.packed_modules_mapping, skip_with_substr=True, ): return UnquantizedLinearMethod() return CPUAWQLinearMethod(self) return None def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"): if self.modules_to_not_convert: self.modules_to_not_convert = hf_to_vllm_mapper.apply_list( self.modules_to_not_convert ) def maybe_update_config(self, model_name: str, revision: str | None = None): if self.modules_to_not_convert: return unquant_dtypes = [torch.float16, torch.bfloat16, torch.float32] metadata = get_safetensors_params_metadata(model_name, revision=revision) layers = {param_name.rsplit(".", 1)[0] for param_name in metadata} quant_layers: set[str] = { param_name.rsplit(".", 1)[0] for param_name, info in metadata.items() if (dtype := info.get("dtype", None)) and _SAFETENSORS_TO_TORCH_DTYPE[dtype] not in unquant_dtypes } self.modules_to_not_convert = list(layers - quant_layers) class CPUAWQLinearMethod(LinearMethodBase): """Linear method for CPU AWQ. Args: quant_config: The CPU AWQ quantization config. """ def __init__(self, quant_config: CPUAWQConfig) -> None: self.quant_config = quant_config assert self.quant_config.zero_point def create_weights( self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: list[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs, ) -> None: del output_size output_size_per_partition = sum(output_partition_sizes) weight_loader = extra_weight_attrs.get("weight_loader") # Normalize group_size if self.quant_config.group_size != -1: group_size = self.quant_config.group_size else: group_size = input_size qweight = PackedvLLMParameter( data=torch.empty( input_size_per_partition, output_size_per_partition // self.quant_config.pack_factor, dtype=torch.int32, ), input_dim=0, output_dim=1, packed_dim=1, packed_factor=self.quant_config.pack_factor, weight_loader=weight_loader, ) num_groups = input_size_per_partition // group_size qzeros = PackedvLLMParameter( data=torch.empty( num_groups, output_size_per_partition // self.quant_config.pack_factor, dtype=torch.int32, ), input_dim=0, output_dim=1, packed_dim=1, packed_factor=self.quant_config.pack_factor, weight_loader=weight_loader, ) scales = GroupQuantScaleParameter( data=torch.empty( num_groups, output_size_per_partition, dtype=params_dtype, ), input_dim=0, output_dim=1, weight_loader=weight_loader, ) layer.register_parameter("qweight", qweight) layer.register_parameter("qzeros", qzeros) layer.register_parameter("scales", scales) def process_weights_after_loading(self, layer: torch.nn.Module) -> None: torch.set_printoptions(profile="full", linewidth=5000, sci_mode=False) packed_weight = layer.qweight.data packed_zeros = layer.qzeros.data group_num = packed_zeros.size(0) bits = self.quant_config.weight_bits pack_factor = int(self.quant_config.pack_factor) input_size, packed_output_size = packed_weight.size() output_size = packed_output_size * pack_factor isa_hint = _get_isa_hint(layer.scales.dtype) layer.isa_hint = isa_hint interleave_map = (0, 4, 1, 5, 2, 6, 3, 7) weight = unpack_cols( packed_weight, bits, input_size, output_size, ) zeros = unpack_cols( packed_zeros, bits, group_num, output_size, ) weight = ( weight.view(input_size, -1, pack_factor)[:, :, interleave_map] .reshape(input_size, output_size) .contiguous() ) zeros = ( zeros.view(group_num, -1, pack_factor)[:, :, interleave_map] .reshape(group_num, output_size) .contiguous() ) zeros = pack_cols(zeros, bits, group_num, output_size).contiguous() # make 16 output channel as a block and transpose to # the make the block contigous weight = pack_cols(weight, bits, input_size, output_size) weight = ( weight.view(input_size, -1, 16 // pack_factor) .permute(1, 0, 2) .reshape(-1, input_size * 16 // pack_factor) .contiguous() ) layer.qweight.data = weight layer.qzeros.data = zeros def apply( self, layer: torch.nn.Module, x: torch.Tensor, bias: torch.Tensor | None = None, ) -> torch.Tensor: x = cpu_gemm_wna16( input=x, q_weight=layer.qweight, scales=layer.scales, zeros=layer.qzeros, g_idx=None, bias=bias, pack_factor=8, isa_hint=layer.isa_hint, ) return x def _get_isa_hint(dtype: torch.dtype) -> str: supports_amx = torch._C._cpu._is_amx_tile_supported() if supports_amx and dtype in (torch.bfloat16,): return "amx" else: return "vec"