# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import contextlib import copy import hashlib import os from collections.abc import Callable from contextlib import ExitStack from typing import Any, Literal from unittest.mock import patch import torch import torch._inductor.compile_fx import torch.fx as fx import vllm.envs as envs from vllm.compilation.counter import compilation_counter from vllm.config import VllmConfig from vllm.utils.torch_utils import is_torch_equal_or_newer class CompilerInterface: """ The interface for a compiler that can be used by vLLM. """ # The name of the compiler, e.g. inductor. # This is a class-level attribute. name: str def initialize_cache( self, cache_dir: str, disable_cache: bool = False, prefix: str = "" ): """ when the vLLM process uses `cache_dir` as the cache directory, the compiler should initialize itself with the cache directory, e.g. by re-directing its own cache directory to a sub-directory. prefix can be used in combination with cache_dir to figure out the base cache directory, e.g. there're multiple parts of model being compiled, but we want to share the same cache directory for all of them. e.g. cache_dir = "/path/to/dir/backbone", prefix = "backbone" cache_dir = "/path/to/dir/eagle_head", prefix = "eagle_head" """ pass def compute_hash(self, vllm_config: VllmConfig) -> str: """ Gather all the relevant information from the vLLM config, to compute a hash so that we can cache the compiled model. See [`VllmConfig.compute_hash`][vllm.config.VllmConfig.compute_hash] to check what information is already considered by default. This function should only consider the information that is specific to the compiler. """ return "" def compile( self, graph: fx.GraphModule, example_inputs: list[Any], compiler_config: dict[str, Any], runtime_shape: int | None = None, key: str | None = None, ) -> tuple[Callable | None, Any | None]: """ Compile the graph with the given example inputs and compiler config, with a runtime shape. If the `runtime_shape` is None, it means the `example_inputs` have a dynamic shape. Otherwise, the `runtime_shape` specifies the shape of the inputs. Right now we only support one variable shape for all inputs, which is the batchsize (number of tokens) during inference. Dynamo will make sure `graph(*example_inputs)` is valid. The function should return a compiled callable function, as well as a handle that can be used to directly load the compiled function. The handle should be a plain Python object, preferably a string or a file path for readability. If the compiler doesn't support caching, it should return None for the handle. If the compiler fails to compile the graph, it should return None for the compiled function as well. `key` is required for StandaloneInductorAdapter, it specifies where to save the compiled artifact. The compiled artifact gets saved to `cache_dir/key`. """ return None, None def load( self, handle: Any, graph: fx.GraphModule, example_inputs: list[Any], graph_index: int, runtime_shape: int | None = None, ) -> Callable: """ Load the compiled function from the handle. Raises an error if the handle is invalid. The handle is the second return value of the `compile` function. """ raise NotImplementedError("caching is not supported") class AlwaysHitShapeEnv: """ Why do we need this class: For normal `torch.compile` usage, every compilation will have one Dynamo bytecode compilation and one Inductor compilation. The Inductor compilation happens under the context of the Dynamo bytecode compilation, and that context is used to determine the dynamic shape information, etc. For our use case, we only run Dynamo bytecode compilation once, and run Inductor compilation multiple times with different shapes plus a general shape. The compilation for specific shapes happens outside of the context of the Dynamo bytecode compilation. At that time, we don't have shape environment to provide to Inductor, and it will fail the Inductor code cache lookup. By providing a dummy shape environment that always hits, we can make the Inductor code cache lookup always hit, and we can compile the graph for different shapes as needed. The following dummy methods are obtained by trial-and-error until it works. """ def __init__(self) -> None: self.guards: list[Any] = [] def evaluate_guards_expression(self, *args, **kwargs): return True def get_pruned_guards(self, *args, **kwargs): return [] def produce_guards_expression(self, *args, **kwargs): return "" def get_inductor_factors() -> list[Any]: factors: list[Any] = [] # summarize system state from torch._inductor.codecache import CacheBase system_factors = CacheBase.get_system() factors.append(system_factors) # summarize pytorch state from torch._inductor.codecache import torch_key torch_factors = torch_key() factors.append(torch_factors) return factors def is_compile_cache_enabled( vllm_additional_inductor_config: dict[str, Any], ) -> bool: vllm_inductor_config_disable_cache = vllm_additional_inductor_config.get( "force_disable_caches", False ) # TODO(gmagogsfm): Replace torch._inductor.config.force_disable_caches # with torch.compiler.config.force_disable_caches when minimum PyTorch # version reaches 2.10 return ( not envs.VLLM_DISABLE_COMPILE_CACHE and not torch._inductor.config.force_disable_caches and not vllm_inductor_config_disable_cache ) class InductorStandaloneAdaptor(CompilerInterface): """ The adaptor for the Inductor compiler. Requires PyTorch 2.8+. This is not on by default yet, but we plan to turn it on by default for PyTorch 2.8. Use VLLM_USE_STANDALONE_COMPILE to toggle this on or off. """ name = "inductor_standalone" def __init__(self, save_format: Literal["binary", "unpacked"]): self.save_format = save_format def compute_hash(self, vllm_config: VllmConfig) -> str: factors = get_inductor_factors() hash_str = hashlib.md5( str(factors).encode(), usedforsecurity=False ).hexdigest()[:10] return hash_str def initialize_cache( self, cache_dir: str, disable_cache: bool = False, prefix: str = "" ): self.cache_dir = cache_dir def compile( self, graph: fx.GraphModule, example_inputs: list[Any], compiler_config: dict[str, Any], runtime_shape: int | None = None, key: str | None = None, ) -> tuple[Callable | None, Any | None]: compilation_counter.num_inductor_compiles += 1 current_config = {} if compiler_config is not None: current_config.update(compiler_config) set_inductor_config(current_config, runtime_shape) set_functorch_config() if isinstance(runtime_shape, int): dynamic_shapes = "from_example_inputs" else: dynamic_shapes = "from_tracing_context" from torch._inductor import standalone_compile compiled_graph = standalone_compile( graph, example_inputs, dynamic_shapes=dynamic_shapes, options={"config_patches": current_config}, ) # Save the compiled artifact to disk in the specified path assert key is not None path = os.path.join(self.cache_dir, key) if is_compile_cache_enabled(compiler_config): compiled_graph.save(path=path, format=self.save_format) compilation_counter.num_compiled_artifacts_saved += 1 return compiled_graph, (key, path) def load( self, handle: Any, graph: fx.GraphModule, example_inputs: list[Any], graph_index: int, runtime_shape: int | None = None, ) -> Callable: assert isinstance(handle, tuple) assert isinstance(handle[0], str) assert isinstance(handle[1], str) path = handle[1] inductor_compiled_graph = torch._inductor.CompiledArtifact.load( path=path, format=self.save_format ) from torch._inductor.compile_fx import graph_returns_tuple returns_tuple = graph_returns_tuple(graph) def compiled_graph_wrapper(*args): graph_output = inductor_compiled_graph(*args) # unpack the tuple if needed # TODO(rzou): the implication is that we're not # reading the python bytecode correctly in vLLM? if returns_tuple: return graph_output else: return graph_output[0] return compiled_graph_wrapper class InductorAdaptor(CompilerInterface): """ The adaptor for the Inductor compiler, version 2.5, 2.6, 2.7. """ name = "inductor" def compute_hash(self, vllm_config: VllmConfig) -> str: factors = get_inductor_factors() hash_str = hashlib.md5( str(factors).encode(), usedforsecurity=False ).hexdigest()[:10] return hash_str def initialize_cache( self, cache_dir: str, disable_cache: bool = False, prefix: str = "" ): self.cache_dir = cache_dir self.prefix = prefix self.base_cache_dir = cache_dir[: -len(prefix)] if prefix else cache_dir if disable_cache: return # redirect the cache directory to a sub-directory # set flags so that Inductor and Triton store their cache # in the cache_dir, then users only need to copy the cache_dir # to another machine to reuse the cache. inductor_cache = os.path.join(self.base_cache_dir, "inductor_cache") os.makedirs(inductor_cache, exist_ok=True) os.environ["TORCHINDUCTOR_CACHE_DIR"] = inductor_cache triton_cache = os.path.join(self.base_cache_dir, "triton_cache") os.makedirs(triton_cache, exist_ok=True) os.environ["TRITON_CACHE_DIR"] = triton_cache def compile( self, graph: fx.GraphModule, example_inputs: list[Any], compiler_config: dict[str, Any], runtime_shape: int | None = None, key: str | None = None, ) -> tuple[Callable | None, Any | None]: compilation_counter.num_inductor_compiles += 1 from torch._inductor.compile_fx import compile_fx current_config = {} if compiler_config is not None: current_config.update(compiler_config) # disable remote cache current_config["fx_graph_cache"] = True current_config["fx_graph_remote_cache"] = False set_inductor_config(current_config, runtime_shape) set_functorch_config() # inductor can inplace modify the graph, so we need to copy it # see https://github.com/pytorch/pytorch/issues/138980 graph = copy.deepcopy(graph) # it's the first time we compile this graph # the assumption is that we don't have nested Inductor compilation. # compiled_fx_graph_hash will only be called once, and we can hook # it to get the hash of the compiled graph directly. hash_str, file_path = None, None from torch._inductor.codecache import FxGraphCache, compiled_fx_graph_hash if torch.__version__.startswith("2.5"): original_load = FxGraphCache.load original_load_name = "torch._inductor.codecache.FxGraphCache.load" def hijack_load(*args, **kwargs): inductor_compiled_graph = original_load(*args, **kwargs) nonlocal file_path compiled_fn = inductor_compiled_graph.current_callable file_path = compiled_fn.__code__.co_filename # noqa if ( not file_path.startswith(self.base_cache_dir) and compiled_fn.__closure__ is not None ): # hooked in the align_inputs_from_check_idxs function # in torch/_inductor/utils.py for cell in compiled_fn.__closure__: if not callable(cell.cell_contents): continue if cell.cell_contents.__code__.co_filename.startswith( self.base_cache_dir ): # this is the real file path compiled from Inductor file_path = cell.cell_contents.__code__.co_filename break return inductor_compiled_graph hijacked_compile_fx_inner = torch._inductor.compile_fx.compile_fx_inner # noqa elif torch.__version__ >= "2.6": # function renamed in 2.6 original_load_name = None def hijacked_compile_fx_inner(*args, **kwargs): output = torch._inductor.compile_fx.compile_fx_inner(*args, **kwargs) nonlocal hash_str inductor_compiled_graph = output if inductor_compiled_graph is not None: nonlocal file_path compiled_fn = inductor_compiled_graph.current_callable file_path = compiled_fn.__code__.co_filename # noqa if ( not file_path.startswith(self.base_cache_dir) and compiled_fn.__closure__ is not None ): # hooked in the align_inputs_from_check_idxs function # in torch/_inductor/utils.py for cell in compiled_fn.__closure__: if not callable(cell.cell_contents): continue code = cell.cell_contents.__code__ if code.co_filename.startswith(self.base_cache_dir): # this is the real file path # compiled from Inductor file_path = code.co_filename break hash_str = inductor_compiled_graph._fx_graph_cache_key return output def hijack_compiled_fx_graph_hash(*args, **kwargs): out = compiled_fx_graph_hash(*args, **kwargs) nonlocal hash_str hash_str = out[0] return out def _check_can_cache(*args, **kwargs): # no error means it can be cached. # Inductor refuses to cache the graph outside of Dynamo # tracing context, and also disables caching for graphs # with high-order ops. # For vLLM, in either case, we want to cache the graph. # see https://github.com/pytorch/pytorch/blob/9f5ebf3fc609105a74eab4ccc24932d6353ff566/torch/_inductor/codecache.py#L1221 # noqa return def _get_shape_env() -> AlwaysHitShapeEnv: return AlwaysHitShapeEnv() with ExitStack() as stack: # hijack to get the compiled graph itself if original_load_name is not None: stack.enter_context(patch(original_load_name, hijack_load)) # for hijacking the hash of the compiled graph stack.enter_context( patch( "torch._inductor.codecache.compiled_fx_graph_hash", hijack_compiled_fx_graph_hash, ) ) # for providing a dummy shape environment stack.enter_context( patch( "torch._inductor.codecache.FxGraphCache._get_shape_env", _get_shape_env, ) ) from torch._functorch._aot_autograd.autograd_cache import AOTAutogradCache # torch 2.8+ on main uses _get_shape_env in AOTAutogradCache if hasattr(AOTAutogradCache, "_get_shape_env"): stack.enter_context( patch( "torch._functorch._aot_autograd.autograd_cache.AOTAutogradCache._get_shape_env", _get_shape_env, ) ) # for forcing the graph to be cached stack.enter_context( patch( "torch._inductor.codecache.FxGraphCache._check_can_cache", _check_can_cache, ) ) # Dynamo metrics context, see method for more details. stack.enter_context(self.metrics_context()) # Disable remote caching. When these are on, on remote cache-hit, # the monkey-patched functions never actually get called. # vLLM today assumes and requires the monkey-patched functions to # get hit. # TODO(zou3519): we're going to replace this all with # standalone_compile sometime. if is_torch_equal_or_newer("2.6"): stack.enter_context( torch._inductor.config.patch(fx_graph_remote_cache=False) ) # InductorAdaptor (unfortunately) requires AOTAutogradCache # to be turned off to run. It will fail to acquire the hash_str # and error if not. # StandaloneInductorAdaptor (PyTorch 2.8+) fixes this problem. stack.enter_context( torch._functorch.config.patch(enable_autograd_cache=False) ) stack.enter_context( torch._functorch.config.patch(enable_remote_autograd_cache=False) ) compiled_graph = compile_fx( graph, example_inputs, inner_compile=hijacked_compile_fx_inner, config_patches=current_config, ) # Turn off the checks if we disable the compilation cache. if is_compile_cache_enabled(compiler_config): if hash_str is None: raise RuntimeError( "vLLM failed to compile the model. The most " "likely reason for this is that a previous compilation " "failed, leading to a corrupted compilation artifact. " "We recommend trying to " "remove ~/.cache/vllm/torch_compile_cache and try again " "to see the real issue. " ) assert file_path is not None, ( "failed to get the file path of the compiled graph" ) return compiled_graph, (hash_str, file_path) def load( self, handle: Any, graph: fx.GraphModule, example_inputs: list[Any], graph_index: int, runtime_shape: int | None = None, ) -> Callable: assert isinstance(handle, tuple) assert isinstance(handle[0], str) assert isinstance(handle[1], str) hash_str = handle[0] from torch._functorch._aot_autograd.autograd_cache import AOTAutogradCache from torch._inductor.codecache import FxGraphCache with ExitStack() as exit_stack: exit_stack.enter_context( patch( "torch._inductor.codecache.FxGraphCache._get_shape_env", lambda *args, **kwargs: AlwaysHitShapeEnv(), ) ) # torch 2.8+ on main uses _get_shape_env in AOTAutogradCache if hasattr(AOTAutogradCache, "_get_shape_env"): exit_stack.enter_context( patch( "torch._functorch._aot_autograd.autograd_cache.AOTAutogradCache._get_shape_env", lambda *args, **kwargs: AlwaysHitShapeEnv(), ) ) # Dynamo metrics context, see method for more details. exit_stack.enter_context(self.metrics_context()) if torch.__version__.startswith("2.5"): inductor_compiled_graph = FxGraphCache._lookup_graph( hash_str, example_inputs, True, False ) assert inductor_compiled_graph is not None, ( "Inductor cache lookup failed. Please remove" f"the cache directory and try again." # noqa ) elif torch.__version__ >= "2.6": from torch._inductor.output_code import CompiledFxGraphConstantsWithGm constants = CompiledFxGraphConstantsWithGm(graph) inductor_compiled_graph, _ = FxGraphCache._lookup_graph( hash_str, example_inputs, True, None, constants ) assert inductor_compiled_graph is not None, ( "Inductor cache lookup failed. Please remove" f"the cache directory and try again." # noqa ) # Inductor calling convention (function signature): # f(list) -> tuple # Dynamo calling convention (function signature): # f(*args) -> Any # need to know if the graph returns a tuple from torch._inductor.compile_fx import graph_returns_tuple returns_tuple = graph_returns_tuple(graph) # this is the callable we return to Dynamo to run def compiled_graph(*args): # convert args to list list_args = list(args) graph_output = inductor_compiled_graph(list_args) # unpack the tuple if needed if returns_tuple: return graph_output else: return graph_output[0] return compiled_graph def metrics_context(self) -> contextlib.AbstractContextManager: """ This method returns the Dynamo metrics context (if it exists, otherwise a null context). It is used by various compile components. Present in torch>=2.6, it's used inside FxGraphCache in torch==2.6 (but not after). It might also be used in various other torch.compile internal functions. Because it is re-entrant, we always set it (even if entering via Dynamo and the context was already entered). We might want to revisit if it should be set at a different mode of compilation. This is likely a bug in PyTorch: public APIs should not rely on manually setting up internal contexts. But we also rely on non-public APIs which might not provide these guarantees. """ if is_torch_equal_or_newer("2.6"): import torch._dynamo.utils return torch._dynamo.utils.get_metrics_context() else: return contextlib.nullcontext() def set_inductor_config(config, runtime_shape): if isinstance(runtime_shape, int): # for a specific batchsize, tuning triton kernel parameters # can be beneficial config["max_autotune"] = envs.VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE config["coordinate_descent_tuning"] = ( envs.VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING ) def set_functorch_config(): torch._functorch.config.bundled_autograd_cache = False class EagerAdaptor(CompilerInterface): name = "eager" def compile( self, graph: fx.GraphModule, example_inputs: list[Any], compiler_config: dict[str, Any], runtime_shape: int | None = None, key: str | None = None, ) -> tuple[Callable | None, Any | None]: compilation_counter.num_eager_compiles += 1 # we don't need to compile the graph, just return the graph itself. # It does not support caching, return None for the handle. return graph, None