# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest from vllm.config import ModelConfig from vllm.inputs import zip_enc_dec_prompts from vllm.inputs.parse import parse_raw_prompts from vllm.inputs.preprocess import InputPreprocessor from vllm.transformers_utils.tokenizer import init_tokenizer_from_configs pytestmark = pytest.mark.cpu_test STRING_INPUTS = [ "", "foo", "foo bar", "foo baz bar", "foo bar qux baz", ] TOKEN_INPUTS = [ [-1], [1], [1, 2], [1, 3, 4], [1, 2, 4, 3], ] INPUTS_SLICES = [ slice(None, None, -1), slice(None, None, 2), slice(None, None, -2), ] def test_parse_raw_single_batch_empty(): with pytest.raises(ValueError, match="at least one prompt"): parse_raw_prompts([]) with pytest.raises(ValueError, match="at least one prompt"): parse_raw_prompts([[]]) @pytest.mark.parametrize("string_input", STRING_INPUTS) def test_parse_raw_single_batch_string_consistent(string_input: str): assert parse_raw_prompts(string_input) == parse_raw_prompts([string_input]) @pytest.mark.parametrize("token_input", TOKEN_INPUTS) def test_parse_raw_single_batch_token_consistent(token_input: list[int]): assert parse_raw_prompts(token_input) == parse_raw_prompts([token_input]) @pytest.mark.parametrize("inputs_slice", INPUTS_SLICES) def test_parse_raw_single_batch_string_slice(inputs_slice: slice): assert parse_raw_prompts(STRING_INPUTS)[inputs_slice] == parse_raw_prompts( STRING_INPUTS[inputs_slice] ) # yapf: disable @pytest.mark.parametrize('mm_processor_kwargs,expected_mm_kwargs', [ (None, [{}, {}]), ({}, [{}, {}]), ({"foo": 100}, [{"foo": 100}, {"foo": 100}]), ([{"foo": 100}, {"bar": 200}], [{"foo": 100}, {"bar": 200}]), ]) # yapf: enable def test_zip_enc_dec_prompts(mm_processor_kwargs, expected_mm_kwargs): """Test mm_processor_kwargs init for zipping enc/dec prompts.""" encoder_prompts = ['An encoder prompt', 'Another encoder prompt'] decoder_prompts = ['A decoder prompt', 'Another decoder prompt'] zipped_prompts = zip_enc_dec_prompts(encoder_prompts, decoder_prompts, mm_processor_kwargs) assert len(zipped_prompts) == len(encoder_prompts) == len(decoder_prompts) for enc, dec, exp_kwargs, zipped in zip(encoder_prompts, decoder_prompts, expected_mm_kwargs, zipped_prompts): assert isinstance(zipped, dict) assert len(zipped.keys()) == 3 assert zipped['encoder_prompt'] == enc assert zipped['decoder_prompt'] == dec assert zipped['mm_processor_kwargs'] == exp_kwargs @pytest.mark.parametrize("model_id", [ "facebook/opt-125m", ]) @pytest.mark.parametrize("prompt", [ { "prompt": "", "multi_modal_data": { "dummy": [] }, }, { "prompt_token_ids": [], "multi_modal_data": { "dummy": [] }, }, ]) def test_preprocessor_text_no_mm_inputs(model_id, prompt): model_config = ModelConfig(model=model_id) tokenizer = init_tokenizer_from_configs(model_config) input_preprocessor = InputPreprocessor(model_config, tokenizer) with pytest.raises(ValueError, match="does not support multimodal inputs"): input_preprocessor.preprocess(prompt) @pytest.mark.parametrize("model_id", [ "facebook/chameleon-7b", ]) @pytest.mark.parametrize("prompt", [ "", { "prompt_token_ids": [] }, ]) def test_preprocessor_always_mm_code_path(model_id, prompt): model_config = ModelConfig(model=model_id) tokenizer = init_tokenizer_from_configs(model_config) input_preprocessor = InputPreprocessor(model_config, tokenizer) # HF processor adds sep token sep_token_id = tokenizer.vocab[tokenizer.sep_token] processed_inputs = input_preprocessor.preprocess(prompt) assert sep_token_id in processed_inputs["prompt_token_ids"]