# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Sequence from transformers import PreTrainedTokenizerBase from vllm.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage from vllm.logger import init_logger from vllm.reasoning import ReasoningParser logger = init_logger(__name__) class Glm4MoeModelReasoningParser(ReasoningParser): """ Reasoning parser for the Glm4MoeModel model. The Glm4MoeModel model uses ... tokens to denote reasoning text within its output. The model provides a strict switch to disable reasoning output via the 'enable_thinking=False' parameter. This parser extracts the reasoning content enclosed by and tokens from the model's output. """ def __init__(self, tokenizer: PreTrainedTokenizerBase, *args, **kwargs): super().__init__(tokenizer, *args, **kwargs) self.think_start_token = "" self.think_end_token = "" self.assistant_token = "<|assistant|>" if not self.model_tokenizer: raise ValueError( "The model tokenizer must be passed to the ReasoningParser " "constructor during construction." ) self.think_start_token_id = self.vocab.get(self.think_start_token) self.think_end_token_id = self.vocab.get(self.think_end_token) self.assistant_token_id = self.vocab.get(self.assistant_token) if ( self.think_start_token_id is None or self.think_end_token_id is None or self.assistant_token_id is None ): raise RuntimeError( "Glm4MoeModel reasoning parser could not locate " "think start/end or assistant tokens in the tokenizer!" ) def is_reasoning_end(self, input_ids: list[int]) -> bool: """ GLM's chat template has tokens after every <|assistant|> token. Thus, we need to check if is after the most recent <|assistant|> token (if present). """ for token_id in input_ids[::-1]: if token_id == self.think_end_token_id: return True elif token_id == self.assistant_token_id: return False return False def extract_content_ids(self, input_ids: list[int]) -> list[int]: """ Extract the content after the end tokens """ if self.think_end_token_id not in input_ids[:-1]: return [] else: return input_ids[input_ids.index(self.think_end_token_id) + 1 :] def extract_reasoning_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], ) -> DeltaMessage | None: """ Extract reasoning content from a delta message. Handles streaming output where previous + delta = current. Uses token IDs for faster processing. For text abcxyz: - 'abc' goes to reasoning - 'xyz' goes to content """ # Skip single special tokens if len(delta_token_ids) == 1 and ( delta_token_ids[0] in [self.think_start_token_id, self.think_end_token_id] ): return None if self.think_start_token_id in previous_token_ids: if self.think_end_token_id in delta_token_ids: # in previous, in delta, # extract reasoning content end_index = delta_text.find(self.think_end_token) reasoning = delta_text[:end_index] content = delta_text[end_index + len(self.think_end_token) :] return DeltaMessage( reasoning=reasoning, content=content if content else None, ) elif self.think_end_token_id in previous_token_ids: # in previous, in previous, # reasoning content continues return DeltaMessage(content=delta_text) else: # in previous, no in previous or delta, # reasoning content continues return DeltaMessage(reasoning=delta_text) elif self.think_start_token_id in delta_token_ids: if self.think_end_token_id in delta_token_ids: # in delta, in delta, extract reasoning content start_index = delta_text.find(self.think_start_token) end_index = delta_text.find(self.think_end_token) reasoning = delta_text[ start_index + len(self.think_start_token) : end_index ] content = delta_text[end_index + len(self.think_end_token) :] return DeltaMessage( reasoning=reasoning, content=content if content else None, ) else: # in delta, no in delta, # reasoning content continues return DeltaMessage(reasoning=delta_text) else: # thinking is disabled, just content return DeltaMessage(content=delta_text) def extract_reasoning( self, model_output: str, request: ChatCompletionRequest ) -> tuple[str | None, str | None]: """ Extract reasoning content from the model output. For text abcxyz: - 'abc' goes to reasoning - 'xyz' goes to content Returns: tuple[Optional[str], Optional[str]]: reasoning content and content """ # Check if the model output contains the and tokens. if ( self.think_start_token not in model_output or self.think_end_token not in model_output ): return None, model_output # Check if the is present in the model output, remove it # if it is present. model_output_parts = model_output.partition(self.think_start_token) model_output = ( model_output_parts[2] if model_output_parts[1] else model_output_parts[0] ) # Check if the model output contains the tokens. # If the end token is not found, return the model output as is. if self.think_end_token not in model_output: return None, model_output # Extract reasoning content from the model output. reasoning, _, content = model_output.partition(self.think_end_token) final_content = content or None return reasoning, final_content