# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import os from dataclasses import MISSING, Field, asdict, dataclass, field from unittest.mock import patch import pytest from vllm.compilation.backends import VllmBackend from vllm.config import ModelConfig, PoolerConfig, VllmConfig, update_config from vllm.config.load import LoadConfig from vllm.config.utils import get_field from vllm.model_executor.layers.pooler import PoolingType from vllm.platforms import current_platform def test_compile_config_repr_succeeds(): # setup: VllmBackend mutates the config object config = VllmConfig() backend = VllmBackend(config) backend.configure_post_pass() # test that repr(config) succeeds val = repr(config) assert 'VllmConfig' in val assert 'inductor_passes' in val @dataclass class _TestConfigFields: a: int b: dict = field(default_factory=dict) c: str = "default" def test_get_field(): with pytest.raises(ValueError): get_field(_TestConfigFields, "a") b = get_field(_TestConfigFields, "b") assert isinstance(b, Field) assert b.default is MISSING assert b.default_factory is dict c = get_field(_TestConfigFields, "c") assert isinstance(c, Field) assert c.default == "default" assert c.default_factory is MISSING @dataclass class _TestNestedConfig: a: _TestConfigFields = field( default_factory=lambda: _TestConfigFields(a=0)) def test_update_config(): # Simple update config1 = _TestConfigFields(a=0) new_config1 = update_config(config1, {"a": 42}) assert new_config1.a == 42 # Nonexistent field with pytest.raises(AssertionError): new_config1 = update_config(config1, {"nonexistent": 1}) # Nested update with dataclass config2 = _TestNestedConfig() new_inner_config = _TestConfigFields(a=1, c="new_value") new_config2 = update_config(config2, {"a": new_inner_config}) assert new_config2.a == new_inner_config # Nested update with dict config3 = _TestNestedConfig() new_config3 = update_config(config3, {"a": {"c": "new_value"}}) assert new_config3.a.c == "new_value" # Nested update with invalid type with pytest.raises(AssertionError): new_config3 = update_config(config3, {"a": "new_value"}) # Can remove once --task option is fully deprecated @pytest.mark.parametrize( ("model_id", "expected_runner_type", "expected_convert_type", "expected_task"), [ ("distilbert/distilgpt2", "generate", "none", "generate"), ("intfloat/multilingual-e5-small", "pooling", "none", "embed"), ("jason9693/Qwen2.5-1.5B-apeach", "pooling", "classify", "classify"), ("cross-encoder/ms-marco-MiniLM-L-6-v2", "pooling", "none", "classify"), ("Qwen/Qwen2.5-Math-RM-72B", "pooling", "none", "reward"), ("openai/whisper-small", "generate", "none", "transcription"), ], ) def test_auto_task(model_id, expected_runner_type, expected_convert_type, expected_task): config = ModelConfig(model_id, task="auto") assert config.runner_type == expected_runner_type assert config.convert_type == expected_convert_type # Can remove once --task option is fully deprecated @pytest.mark.parametrize( ("model_id", "expected_runner_type", "expected_convert_type", "expected_task"), [ ("distilbert/distilgpt2", "pooling", "embed", "embed"), ("intfloat/multilingual-e5-small", "pooling", "embed", "embed"), ("jason9693/Qwen2.5-1.5B-apeach", "pooling", "classify", "classify"), ("cross-encoder/ms-marco-MiniLM-L-6-v2", "pooling", "classify", "classify"), ("Qwen/Qwen2.5-Math-RM-72B", "pooling", "embed", "embed"), ("openai/whisper-small", "pooling", "embed", "embed"), ], ) def test_score_task(model_id, expected_runner_type, expected_convert_type, expected_task): config = ModelConfig(model_id, task="score") assert config.runner_type == expected_runner_type assert config.convert_type == expected_convert_type # Can remove once --task option is fully deprecated @pytest.mark.parametrize( ("model_id", "expected_runner_type", "expected_convert_type", "expected_task"), [ ("openai/whisper-small", "generate", "none", "transcription"), ], ) def test_transcription_task(model_id, expected_runner_type, expected_convert_type, expected_task): config = ModelConfig(model_id, task="transcription") assert config.runner_type == expected_runner_type assert config.convert_type == expected_convert_type @pytest.mark.parametrize( ("model_id", "expected_runner_type", "expected_convert_type"), [ ("distilbert/distilgpt2", "generate", "none"), ("intfloat/multilingual-e5-small", "pooling", "none"), ("jason9693/Qwen2.5-1.5B-apeach", "pooling", "classify"), ("cross-encoder/ms-marco-MiniLM-L-6-v2", "pooling", "none"), ("Qwen/Qwen2.5-Math-RM-72B", "pooling", "none"), ("openai/whisper-small", "generate", "none"), ], ) def test_auto_runner(model_id, expected_runner_type, expected_convert_type): config = ModelConfig(model_id, runner="auto") assert config.runner_type == expected_runner_type assert config.convert_type == expected_convert_type @pytest.mark.parametrize( ("model_id", "expected_runner_type", "expected_convert_type"), [ ("distilbert/distilgpt2", "pooling", "embed"), ("intfloat/multilingual-e5-small", "pooling", "none"), ("jason9693/Qwen2.5-1.5B-apeach", "pooling", "classify"), ("cross-encoder/ms-marco-MiniLM-L-6-v2", "pooling", "none"), ("Qwen/Qwen2.5-Math-RM-72B", "pooling", "none"), ("openai/whisper-small", "pooling", "embed"), ], ) def test_pooling_runner(model_id, expected_runner_type, expected_convert_type): config = ModelConfig(model_id, runner="pooling") assert config.runner_type == expected_runner_type assert config.convert_type == expected_convert_type @pytest.mark.parametrize( ("model_id", "expected_runner_type", "expected_convert_type"), [ ("Qwen/Qwen2.5-1.5B-Instruct", "draft", "none"), ], ) def test_draft_runner(model_id, expected_runner_type, expected_convert_type): config = ModelConfig(model_id, runner="draft") assert config.runner_type == expected_runner_type assert config.convert_type == expected_convert_type MODEL_IDS_EXPECTED = [ ("Qwen/Qwen1.5-7B", 32768), ("mistralai/Mistral-7B-v0.1", 4096), ("mistralai/Mistral-7B-Instruct-v0.2", 32768), ] @pytest.mark.parametrize("model_id_expected", MODEL_IDS_EXPECTED) def test_disable_sliding_window(model_id_expected): model_id, expected = model_id_expected model_config = ModelConfig(model_id, disable_sliding_window=True) assert model_config.max_model_len == expected @pytest.mark.skipif(current_platform.is_rocm(), reason="Xformers backend is not supported on ROCm.") def test_get_pooling_config(): model_id = "sentence-transformers/all-MiniLM-L12-v2" model_config = ModelConfig(model_id) assert model_config.pooler_config is not None assert model_config.pooler_config.normalize assert model_config.pooler_config.pooling_type == PoolingType.MEAN.name @pytest.mark.skipif(current_platform.is_rocm(), reason="Xformers backend is not supported on ROCm.") def test_get_pooling_config_from_args(): model_id = "sentence-transformers/all-MiniLM-L12-v2" pooler_config = PoolerConfig(pooling_type="CLS", normalize=True) model_config = ModelConfig(model_id, pooler_config=pooler_config) assert asdict(model_config.pooler_config) == asdict(pooler_config) @pytest.mark.parametrize( ("model_id", "default_pooling_type", "pooling_type"), [ ("tomaarsen/Qwen3-Reranker-0.6B-seq-cls", "LAST", "LAST"), # LLM ("intfloat/e5-small", "CLS", "MEAN"), # BertModel ("Qwen/Qwen2.5-Math-RM-72B", "ALL", "ALL"), # reward ("Qwen/Qwen2.5-Math-PRM-7B", "STEP", "STEP") # step reward ]) def test_default_pooling_type(model_id, default_pooling_type, pooling_type): model_config = ModelConfig(model_id) assert model_config._model_info.default_pooling_type == default_pooling_type assert model_config.pooler_config.pooling_type == pooling_type @pytest.mark.skipif(current_platform.is_rocm(), reason="Xformers backend is not supported on ROCm.") def test_get_bert_tokenization_sentence_transformer_config(): model_id = "BAAI/bge-base-en-v1.5" bge_model_config = ModelConfig(model_id) bert_bge_model_config = bge_model_config._get_encoder_config() assert bert_bge_model_config["max_seq_length"] == 512 assert bert_bge_model_config["do_lower_case"] def test_rope_customization(): TEST_ROPE_SCALING = {"rope_type": "dynamic", "factor": 2.0} TEST_ROPE_THETA = 16_000_000.0 LONGCHAT_ROPE_SCALING = {"rope_type": "linear", "factor": 8.0} llama_model_config = ModelConfig("meta-llama/Meta-Llama-3-8B-Instruct") assert getattr(llama_model_config.hf_config, "rope_scaling", None) is None assert getattr(llama_model_config.hf_config, "rope_theta", None) == 500_000 assert llama_model_config.max_model_len == 8192 llama_model_config = ModelConfig( "meta-llama/Meta-Llama-3-8B-Instruct", hf_overrides={ "rope_scaling": TEST_ROPE_SCALING, "rope_theta": TEST_ROPE_THETA, }, ) assert getattr(llama_model_config.hf_config, "rope_scaling", None) == TEST_ROPE_SCALING assert getattr(llama_model_config.hf_config, "rope_theta", None) == TEST_ROPE_THETA assert llama_model_config.max_model_len == 16384 longchat_model_config = ModelConfig("lmsys/longchat-13b-16k") # Check if LONGCHAT_ROPE_SCALING entries are in longchat_model_config assert all( longchat_model_config.hf_config.rope_scaling.get(key) == value for key, value in LONGCHAT_ROPE_SCALING.items()) assert longchat_model_config.max_model_len == 16384 longchat_model_config = ModelConfig( "lmsys/longchat-13b-16k", hf_overrides={ "rope_scaling": TEST_ROPE_SCALING, }, ) assert getattr(longchat_model_config.hf_config, "rope_scaling", None) == TEST_ROPE_SCALING assert longchat_model_config.max_model_len == 4096 @pytest.mark.skipif(current_platform.is_rocm(), reason="Encoder Decoder models not supported on ROCm.") @pytest.mark.parametrize(("model_id", "is_encoder_decoder"), [ ("facebook/opt-125m", False), ("openai/whisper-tiny", True), ("meta-llama/Llama-3.2-1B-Instruct", False), ]) def test_is_encoder_decoder(model_id, is_encoder_decoder): config = ModelConfig(model_id) assert config.is_encoder_decoder == is_encoder_decoder @pytest.mark.parametrize(("model_id", "uses_mrope"), [ ("facebook/opt-125m", False), ("Qwen/Qwen2-VL-2B-Instruct", True), ]) def test_uses_mrope(model_id, uses_mrope): config = ModelConfig(model_id) assert config.uses_mrope == uses_mrope def test_generation_config_loading(): model_id = "Qwen/Qwen2.5-1.5B-Instruct" # When set generation_config to "vllm", the default generation config # will not be loaded. model_config = ModelConfig(model_id, generation_config="vllm") assert model_config.get_diff_sampling_param() == {} # When set generation_config to "auto", the default generation config # should be loaded. model_config = ModelConfig(model_id, generation_config="auto") correct_generation_config = { "repetition_penalty": 1.1, "temperature": 0.7, "top_p": 0.8, "top_k": 20, } assert model_config.get_diff_sampling_param() == correct_generation_config # The generation config could be overridden by the user. override_generation_config = {"temperature": 0.5, "top_k": 5} model_config = ModelConfig( model_id, generation_config="auto", override_generation_config=override_generation_config) override_result = correct_generation_config.copy() override_result.update(override_generation_config) assert model_config.get_diff_sampling_param() == override_result # When generation_config is set to "vllm" and override_generation_config # is set, the override_generation_config should be used directly. model_config = ModelConfig( model_id, generation_config="vllm", override_generation_config=override_generation_config) assert model_config.get_diff_sampling_param() == override_generation_config @pytest.mark.parametrize("pt_load_map_location", [ "cuda", { "": "cuda" }, ]) def test_load_config_pt_load_map_location(pt_load_map_location): load_config = LoadConfig(pt_load_map_location=pt_load_map_location) config = VllmConfig(load_config=load_config) assert config.load_config.pt_load_map_location == pt_load_map_location @pytest.mark.parametrize( ("model_id", "max_model_len", "expected_max_len", "should_raise"), [ ("BAAI/bge-reranker-base", None, 512, False), ("BAAI/bge-reranker-base", 256, 256, False), ("BAAI/bge-reranker-base", 513, 512, True), ("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", None, 131072, False), ("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", 131073, 131072, True), ]) def test_get_and_verify_max_len(model_id, max_model_len, expected_max_len, should_raise): """Test get_and_verify_max_len with different configurations.""" model_config = ModelConfig(model_id) if should_raise: with pytest.raises(ValueError): model_config.get_and_verify_max_len(max_model_len) else: actual_max_len = model_config.get_and_verify_max_len(max_model_len) assert actual_max_len == expected_max_len class MockConfig: """Simple mock object for testing maybe_pull_model_tokenizer_for_runai""" def __init__(self, model: str, tokenizer: str): self.model = model self.tokenizer = tokenizer self.model_weights = None @pytest.mark.parametrize("s3_url", [ "s3://example-bucket-1/model/", "s3://example-bucket-2/model/", ]) @patch('vllm.transformers_utils.runai_utils.ObjectStorageModel.pull_files') def test_s3_url_model_tokenizer_paths(mock_pull_files, s3_url): """Test that S3 URLs create deterministic local directories for model and tokenizer.""" # Mock pull_files to avoid actually downloading files during tests mock_pull_files.return_value = None # Create first mock and run the method config1 = MockConfig(model=s3_url, tokenizer=s3_url) ModelConfig.maybe_pull_model_tokenizer_for_runai(config1, s3_url, s3_url) # Check that model and tokenizer point to existing directories assert os.path.exists( config1.model), f"Model directory does not exist: {config1.model}" assert os.path.isdir( config1.model), f"Model path is not a directory: {config1.model}" assert os.path.exists( config1.tokenizer ), f"Tokenizer directory does not exist: {config1.tokenizer}" assert os.path.isdir( config1.tokenizer ), f"Tokenizer path is not a directory: {config1.tokenizer}" # Verify that the paths are different from the original S3 URL assert config1.model != s3_url, ( "Model path should be converted to local directory") assert config1.tokenizer != s3_url, ( "Tokenizer path should be converted to local directory") # Store the original paths created_model_dir = config1.model create_tokenizer_dir = config1.tokenizer # Create a new mock and run the method with the same S3 URL config2 = MockConfig(model=s3_url, tokenizer=s3_url) ModelConfig.maybe_pull_model_tokenizer_for_runai(config2, s3_url, s3_url) # Check that the new directories exist assert os.path.exists( config2.model), f"Model directory does not exist: {config2.model}" assert os.path.isdir( config2.model), f"Model path is not a directory: {config2.model}" assert os.path.exists( config2.tokenizer ), f"Tokenizer directory does not exist: {config2.tokenizer}" assert os.path.isdir( config2.tokenizer ), f"Tokenizer path is not a directory: {config2.tokenizer}" # Verify that the paths are deterministic (same as before) assert config2.model == created_model_dir, ( f"Model paths are not deterministic. " f"Original: {created_model_dir}, New: {config2.model}") assert config2.tokenizer == create_tokenizer_dir, ( f"Tokenizer paths are not deterministic. " f"Original: {create_tokenizer_dir}, New: {config2.tokenizer}") @patch('vllm.transformers_utils.runai_utils.ObjectStorageModel.pull_files') def test_s3_url_different_models_create_different_directories(mock_pull_files): """Test that different S3 URLs create different local directories.""" # Mock pull_files to avoid actually downloading files during tests mock_pull_files.return_value = None s3_url1 = "s3://example-bucket-1/model/" s3_url2 = "s3://example-bucket-2/model/" # Create mocks with different S3 URLs and run the method config1 = MockConfig(model=s3_url1, tokenizer=s3_url1) ModelConfig.maybe_pull_model_tokenizer_for_runai(config1, s3_url1, s3_url1) config2 = MockConfig(model=s3_url2, tokenizer=s3_url2) ModelConfig.maybe_pull_model_tokenizer_for_runai(config2, s3_url2, s3_url2) # Verify that different URLs produce different directories assert config1.model != config2.model, ( f"Different S3 URLs should create different model directories. " f"URL1 model: {config1.model}, URL2 model: {config2.model}") assert config1.tokenizer != config2.tokenizer, ( f"Different S3 URLs should create different tokenizer directories. " f"URL1 tokenizer: {config1.tokenizer}, " f"URL2 tokenizer: {config2.tokenizer}") # Verify that both sets of directories exist assert os.path.exists(config1.model) and os.path.isdir(config1.model) assert os.path.exists(config1.tokenizer) and os.path.isdir( config1.tokenizer) assert os.path.exists(config2.model) and os.path.isdir(config2.model) assert os.path.exists(config2.tokenizer) and os.path.isdir( config2.tokenizer)