# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ experimental support for data-parallel inference with torchrun Note the data load balancing and distribution is done out of the vllm engine, no internal lb supported in external_launcher mode. To run this example: ```bash $ torchrun --nproc-per-node=2 examples/offline_inference/torchrun_dp_example.py ``` With custom parallelism settings: ```bash $ torchrun --nproc-per-node=8 examples/offline_inference/torchrun_dp_example.py \ --tp-size=2 --pp-size=1 --dp-size=4 --enable-ep ``` """ import argparse from vllm import LLM, SamplingParams def parse_args(): parser = argparse.ArgumentParser( description="Data-parallel inference with torchrun" ) parser.add_argument( "--tp-size", type=int, default=1, help="Tensor parallel size (default: 1)", ) parser.add_argument( "--pp-size", type=int, default=1, help="Pipeline parallel size (default: 1)", ) parser.add_argument( "--dp-size", type=int, default=2, help="Data parallel size (default: 2)", ) parser.add_argument( "--enable-ep", action="store_true", help="Enable expert parallel (default: False)", ) parser.add_argument( "--model", type=str, default="microsoft/Phi-mini-MoE-instruct", help="Model name or path (default: microsoft/Phi-mini-MoE-instruct)", ) parser.add_argument( "--max-model-len", type=int, default=4096, help="Maximum model length (default: 4096)", ) parser.add_argument( "--gpu-memory-utilization", type=float, default=0.6, help="GPU memory utilization (default: 0.6)", ) parser.add_argument( "--seed", type=int, default=1, help="Random seed (default: 1)", ) return parser.parse_args() args = parse_args() # Create prompts, the same across all ranks prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] # Create sampling parameters, the same across all ranks sampling_params = SamplingParams(temperature=0.8, top_p=0.95) # Use `distributed_executor_backend="external_launcher"` so that # this llm engine/instance only creates one worker. # it is important to set an explicit seed to make sure that # all ranks have the same random seed, so that sampling can be # deterministic across ranks. llm = LLM( model=args.model, tensor_parallel_size=args.tp_size, data_parallel_size=args.dp_size, pipeline_parallel_size=args.pp_size, enable_expert_parallel=args.enable_ep, distributed_executor_backend="external_launcher", max_model_len=args.max_model_len, gpu_memory_utilization=args.gpu_memory_utilization, seed=args.seed, ) dp_rank = llm.llm_engine.vllm_config.parallel_config.data_parallel_rank dp_size = llm.llm_engine.vllm_config.parallel_config.data_parallel_size prompts = [ f"{idx}.{prompt}" for idx, prompt in enumerate(prompts) if idx % dp_size == dp_rank ] outputs = llm.generate(prompts, sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print( f"DP Rank: {dp_rank} Prompt: {prompt!r}\nGenerated text: {generated_text!r}\n" ) """ Further tips: 1. to communicate control messages across all ranks, use the cpu group, a PyTorch ProcessGroup with GLOO backend. ```python from vllm.distributed.parallel_state import get_world_group cpu_group = get_world_group().cpu_group torch_rank = dist.get_rank(group=cpu_group) if torch_rank == 0: # do something for rank 0, e.g. saving the results to disk. ``` 2. to communicate data across all ranks, use the model's device group, a PyTorch ProcessGroup with NCCL backend. ```python from vllm.distributed.parallel_state import get_world_group device_group = get_world_group().device_group ``` 3. to access the model directly in every rank, use the following code: ```python llm.llm_engine.model_executor.driver_worker.worker.model_runner.model ``` """